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How stable is the FFLO state ?

Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state requires
complete absence of orbital pair-breaking effects.

In reality, the theoretical limit of purely paramagnetic
pair-breaking cannot be realized.
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How stable is the FFLO state ?

The FFLO state will be disturbed by the following (orbital)
effects:

Coupling between adjacent conducting planes

Finite thickness of conducting planes

Applied field not exactly parallel to conducting planes
This is the topic of my talk
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The problem to be studied.
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The upper critical field Bc2.
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Calculation

Using the quasiclassical equations with Zeeman coupling.

These equations are solved near the upper critical field,
the results hold for arbitrary T .

A superconductor in the clean limit is considered.

A superconductor with isotropic gap and circular Fermi
surface is considered
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Calculation

The Free energy is calculated taking terms of fourth order
in the order parameter magnitude and infinite order in the
order parameter gradient into account.

The unit cell is assumed to carry a single flux quantum -
otherwise no restriction (no Ansatz) on the shape of the

unit cell.

α

a

b 1 FLUX QUANTUM

A description of the lengthy calculation has been
published:

U. Klein, Phys.Rev. B69, 134518, (2004)
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The paramagnetic vortex structure at n=1, (θ = 1.2)
|ψ|2 as a function of x , y
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The paramagnetic vortex structure at n=1, (θ = 1.2)
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The paramagnetic vortex structure at n=1, (θ = 1.2)
|ψ|2 as a function of x , y
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The paramagnetic vortex structure at n=1, (θ = 1.2)
B1‖ as a function of x , y
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The paramagnetic vortex structure at n=1, (θ = 1.2)
B1⊥ as a function of x , y
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Paramagnetic vortex structure at n=2
|ψ|2 as a function of x , y
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Paramagnetic vortex structure at n=2
B1⊥ as a function of x , y : Antivortices
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Paramagnetic vortex structure at n=28
|ψ|2 as a function of x , y
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Summary

A large number of interesting structures with really unusual
features exists in this mixed pair-breaking regime.

The FFLO state is effectively unstable under small
admixtures of orbital pair-breaking.
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