[1]   Y. Aharonov and D. Bohm. Significance of electromagnetic potentials in quantum theory. Phys. Rev., 115(3):485, 1959.

[2]   A. H. Ali. The ensemble quantum state of a single particle. Int. J. Theor. Phys., 48:194–212, 2009.

[3]   V. Allori and N. Zanghi. On the classical limit of quantum mechanics. Foundations of Physics, 39:20–32, 2009.

[4]   Philip W. Anderson. More is different. Science, 177(4047):393–396, August 1972.

[5]   V. Arunsalam. Hamiltonians and wave equations for particles of spin 0 and spin 1-
2 with nonzero mass. Am. J. Phys., 38:1010–1022, 1970.

[6]   L. E. Ballentine. The statistical interpretation of quantum mechanics. Reviews of Modern Physics, 42:358–381, 1970.

[7]   L. E. Ballentine. Inadequacy of Ehrenfest’s theorem to characterize the classical regime. Physical Review, A 50:2854–2859, 1994.

[8]   F. J. Belinfante. Measurements and Time Reversal in Objective Quantum Theory. Pergamon Press, Oxford, 1975.

[9]   F. J. Belinfante. Can individual elementary particles have individual properties? Am. J. Phys., 46(4):329–336, 1978.

[10]   D. I. Blokhintsev. Quantum Mechanics. Reidel, Dordrecht, 1964.

[11]   P. Bocchieri and A. Loinger. Nonexistence of the Aharonov-Bohm effect. Nuovo Cimento, 47A:475–482, 1978.

[12]   C. A. Dartora and G. G. Cabrera. Magnetization, spin current, and spin-transfer torque from SU(2) local gauge invariance of the nonrelativistic Pauli-Schrödinger theory. Physical Review, B 78:012403, 2008.

[13]   P. A. M. Dirac. Quantised singularities in the electromagnetic field. Proc. R. Soc. London, Ser. A, 133:60–72, 1931.

[14]   A. Einstein. Physics and reality. J. Franklin Inst., 221:349, 1936.

[15]   A. Einstein. Reply to Criticism, page 665. Harper and Row, New York, 1949.

[16]   B. Roy Frieden. Fisher information as the basis for the Schrödinger wave equation. Am. J. Phys., 57(11):1004–1008, 1989.

[17]   B. Roy Frieden. Science from Fisher Information, a Unification. Cambridge University Press, Cambridge, 2004.

[18]   Mark J. Gotay. On the Groenewold-Van Hove problem for R2n . J. Math. Phys., 40:2107–2116, 1999.

[19]   R. J. Gould. The intrinsic magnetic moment of elementary particles. Am. J. Phys., 64:597–601, 1995.

[20]   W. Greiner. Classical Mechanics, Systems of particles and Hamiltonian dynamics. Springer, New York, 1989.

[21]   H. J. Groenewold. On the principles of elementary quantum mechanics. Physica, 12:405–460, 1946.

[22]   M. J. Hall and M. Reginatto. Quantum mechanics from a Heisenberg-type equality. Fortschr. Phys., 50:5–7, 2002.

[23]   M. J. Hall and M. Reginatto. Schrödinger equation from an exact uncertainty principle. J. Phys. A, 35:3289–3303, 2002.

[24]   Michael J. W. Hall. Exact uncertainty approach in quantum mechanics and quantum gravity. Gen. Relativ. Grav., 37:1505–1515, 2005.

[25]   Carsten Held. Axiomatic quantum mechanics and completeness. Foundations of Physics, 38:707–732, 2008.

[26]   P. R. Holland. The quantum theory of motion. Cambridge University Press, Cambridge, U.K., 1995.

[27]   R. J. Hughes. On Feynman’s proof of the Maxwell equations. Am. J. Phys., 60:301–306, 1992.

[28]   F. A. Kaempfer. Concepts in Quantum Mechanics. Academic Press, New York, 1965.

[29]   E. C. Kemble. The general principles of quantum mechanics. part I. Rev. Mod. Phys., 1:157–215, 1929.

[30]   K. A. Kirkpatrick. ’Quantal’ behavior in classical probability. Foundations of Physics Letters, 16:199–224, 2003.

[31]   U. Klein. Comment on ’Condition for nonexistence of Aharonov-Bohm effect’. Physical Review D, 23:1463–1465, 1981.

[32]   U. Klein. Schrödinger’s equation with gauge coupling derived from a continuity equation. Foundations of physics, 39:964, 2009.

[33]   U. Klein. The statistical origins of quantum mechanics. Physics Research International, Article ID 808424, 2011.

[34]   D. H. Kobe and K. Yang. Gauge transformation of the time-evolution operator. Phys. Rev. A, 32:952–958, 1985.

[35]   T. Krüger. An attempt to close the Einstein-Podolsky-Rosen debate. Can. J. Phys., 82:53–65, 2004.

[36]   L. D. Landau and E. M. Lifshitz. Classical theory of fields, volume II of Course of theoretical physics. Pergamon Press, Oxford, 5 edition, 1967. Translation from Russian, Nauka, Moscow, 1973.

[37]   L. J. Landau. Macroscopic observation of a quantum particle in a slowly varying potential - on the classical limit of quantum theory. Annals of Physics, 246:190–227, 1996.

[38]   R. B. Laughlin and D. Pines. The theory of everything. Proc. Natl. Acad. Sci. USA, 97:28–31, 2000.

[39]   Robert B. Laughlin. A Different Universe. Basic Books, Cambridge, 2005.

[40]   Y. C. Lee and W. Zhu. The principle of minimal quantum fluctuations for the time-dependent Schrödinger equation. J. Phys. A, 32:3127–3131, 1999.

[41]   J. M. Levy-Leblond. Nonrelativistic particles and wave equations. Comm. Math. Physics, 6:286–311, 1967.

[42]   F. London. Quantenmechanische Deutung der Theorie von Weyl. Z. Phys., 42:375, 1927.

[43]   H. Margenau. Quantum-mechanical description. Physical Review, 49:24–242, 1935.

[44]   H. Margenau. Measurements in quantum mechanics. Annals of Physics, 23:469–485, 1963.

[45]   B. Mashhoon and H. Kaiser. Inertia of intrinsic spin. Physica B, 385-386:1381–1383, 2006.

[46]   M. Morrison. Spin: All is not what it seems. Studies in history and philosophy of modern physics, 38:529–557, 2007.

[47]   L. Motz. Quantization and the classical Hamilton-Jacobi equation. Phys. Rev., 126:378–382, 1962.

[48]   Roger G. Newman. Probability interpretation of quantum mechanics. Am. J. Phys., 48:1029–1034, 1980.

[49]   Hans C. Ohanian. What is spin ? Am. J. Phys., 54:500–505, 1986.

[50]   M. Peshkin and A. Tonomura. The Aharonov-Bohm Effect. Lecture Notes in Physics. Springer Verlag, Berlin, 1989.

[51]   A. B. Pippard. The interpretation of quantum mechanics. Eur. J. Phys., 7:43–48, 1986.

[52]   Karl R. Popper. The Open Universe - an Argument for Indeterminism. Rowman and Littlefield, Totowa, 1982.

[53]   M. Reginatto. Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information. Phys. Rev. A, 58:1775–1778, 1998.

[54]   M. Reginatto. Derivation of the Pauli equation using the principle of minimum Fisher information. Physics Letters, A 249:355–357, 1998.

[55]   N. Rosen. The relation between classical and quantum mechanics. Am. J. Phys., 32:597–600, 1964.

[56]   A. A. Ross-Bonney. Does god play dice ? - a discussion of some interpretations of quantum mechanics. Nuovo Cimento, 30 B:55, 1975.

[57]   E. G. P. Rowe. Classical limit of quantum mechanics (electron in a magnetic field). Am. J. Phys., 59:1111–1117, 1991.

[58]   S. M. Roy. Condition for nonexistence of Aharonov-Bohm effect. Physical Review Letters, 44(3):111–114, 1980.

[59]   R. Schiller. Quasi-classical theory of the nonspinning electron. Phys. Rev., 125(3):1100–1108, February 1962.

[60]   R. Schiller. Quasi-Classical Theory of the Spinning Electron. Phys. Rev., 125(3):1116–1123, February 1962.

[61]   Erwin Schrödinger. Quantisierung als Eigenwertproblem, Erste Mitteilung. Annalen der Physik, 79:361, 1926.

[62]   H. Shirai. Reinterpretation of quantum mechanics based on the statistical interpretation. Foundations of Physics, 28:1633–1662, 1998.

[63]   J. L. Synge. Classical Dynamics, in Encyclopedia of Physics: Principles of Classical Mechanics and Field theory, pages 1–223. Springer, Berlin, 1960.

[64]   J. Syska. Fisher information and quantum-classical field theory: classical statistics similarity. phys. stat. sol.(b), 244:2531–2537, 2007.

[65]   T. Takabayasi. The vector representation of spinning particles in the quantum theory I. Progress in Theoretical Physics., 14:283–302, 1955.

[66]   Y. Toyozawa. Theory of measurement. Progress of Theoretical Physics, 87:293–305, 1992.

[67]   H. R. Tschudi. On the statistical interpretation of quantum mechanics. Helvetica Physica Acta, 60:363–383, 1987.

[68]   J. H. Van Vleck. The correspondence principle in the statistical interpretation of quantum mechanics. Proc. Natl. Acad. Sci. U.S., 14:178–188, 1928.

[69]   R. F. Werner and M. P. H. Wolff. Classical mechanics as quantum mechanics with infinitesimal ℏ . Physics Letters A, 202:155–159, 1995.

[70]   H. Weyl. Elektron und Gravitation I. Z. Phys., 56:330–352, 1929.

[71]   R. H. Young. Quantum mechanics based on position. Foundations of Physics, 10:33–56, 1980.