[1] Y. Aharonov and D. Bohm. Significance of electromagnetic potentials in quantum theory. Phys. Rev., 115(3):485, 1959.
[2] A. H. Ali. The ensemble quantum state of a single particle. Int. J. Theor. Phys., 48:194–212, 2009.
[3] V. Allori and N. Zanghi. On the classical limit of quantum mechanics. Foundations of Physics, 39:20–32, 2009.
[4] Philip W. Anderson. More is different. Science, 177(4047):393–396, August 1972.
[5] V. Arunsalam. Hamiltonians and wave equations for particles of spin and spin
with
nonzero mass. Am. J. Phys., 38:1010–1022, 1970.
[6] L. E. Ballentine. The statistical interpretation of quantum mechanics. Reviews of Modern Physics, 42:358–381, 1970.
[7] L. E. Ballentine. Inadequacy of Ehrenfest’s theorem to characterize the classical regime. Physical Review, A 50:2854–2859, 1994.
[8] F. J. Belinfante. Measurements and Time Reversal in Objective Quantum Theory. Pergamon Press, Oxford, 1975.
[9] F. J. Belinfante. Can individual elementary particles have individual properties? Am. J. Phys., 46(4):329–336, 1978.
[10] D. I. Blokhintsev. Quantum Mechanics. Reidel, Dordrecht, 1964.
[11] P. Bocchieri and A. Loinger. Nonexistence of the Aharonov-Bohm effect. Nuovo Cimento, 47A:475–482, 1978.
[12] C. A. Dartora and G. G. Cabrera. Magnetization, spin current, and spin-transfer torque from SU(2) local gauge invariance of the nonrelativistic Pauli-Schrödinger theory. Physical Review, B 78:012403, 2008.
[13] P. A. M. Dirac. Quantised singularities in the electromagnetic field. Proc. R. Soc. London, Ser. A, 133:60–72, 1931.
[14] A. Einstein. Physics and reality. J. Franklin Inst., 221:349, 1936.
[15] A. Einstein. Reply to Criticism, page 665. Harper and Row, New York, 1949.
[16] B. Roy Frieden. Fisher information as the basis for the Schrödinger wave equation. Am. J. Phys., 57(11):1004–1008, 1989.
[17] B. Roy Frieden. Science from Fisher Information, a Unification. Cambridge University Press, Cambridge, 2004.
[18] Mark J. Gotay. On the Groenewold-Van Hove problem for R. J. Math. Phys.,
40:2107–2116, 1999.
[19] R. J. Gould. The intrinsic magnetic moment of elementary particles. Am. J. Phys., 64:597–601, 1995.
[20] W. Greiner. Classical Mechanics, Systems of particles and Hamiltonian dynamics. Springer, New York, 1989.
[21] H. J. Groenewold. On the principles of elementary quantum mechanics. Physica, 12:405–460, 1946.
[22] M. J. Hall and M. Reginatto. Quantum mechanics from a Heisenberg-type equality. Fortschr. Phys., 50:5–7, 2002.
[23] M. J. Hall and M. Reginatto. Schrödinger equation from an exact uncertainty principle. J. Phys. A, 35:3289–3303, 2002.
[24] Michael J. W. Hall. Exact uncertainty approach in quantum mechanics and quantum gravity. Gen. Relativ. Grav., 37:1505–1515, 2005.
[25] Carsten Held. Axiomatic quantum mechanics and completeness. Foundations of Physics, 38:707–732, 2008.
[26] P. R. Holland. The quantum theory of motion. Cambridge University Press, Cambridge, U.K., 1995.
[27] R. J. Hughes. On Feynman’s proof of the Maxwell equations. Am. J. Phys., 60:301–306, 1992.
[28] F. A. Kaempfer. Concepts in Quantum Mechanics. Academic Press, New York, 1965.
[29] E. C. Kemble. The general principles of quantum mechanics. part I. Rev. Mod. Phys., 1:157–215, 1929.
[30] K. A. Kirkpatrick. ’Quantal’ behavior in classical probability. Foundations of Physics Letters, 16:199–224, 2003.
[31] U. Klein. Comment on ’Condition for nonexistence of Aharonov-Bohm effect’. Physical Review D, 23:1463–1465, 1981.
[32] U. Klein. Schrödinger’s equation with gauge coupling derived from a continuity equation. Foundations of physics, 39:964, 2009.
[33] U. Klein. The statistical origins of quantum mechanics. Physics Research International, Article ID 808424, 2011.
[34] D. H. Kobe and K. Yang. Gauge transformation of the time-evolution operator. Phys. Rev. A, 32:952–958, 1985.
[35] T. Krüger. An attempt to close the Einstein-Podolsky-Rosen debate. Can. J. Phys., 82:53–65, 2004.
[36] L. D. Landau and E. M. Lifshitz. Classical theory of fields, volume II of Course of theoretical physics. Pergamon Press, Oxford, 5 edition, 1967. Translation from Russian, Nauka, Moscow, 1973.
[37] L. J. Landau. Macroscopic observation of a quantum particle in a slowly varying potential - on the classical limit of quantum theory. Annals of Physics, 246:190–227, 1996.
[38] R. B. Laughlin and D. Pines. The theory of everything. Proc. Natl. Acad. Sci. USA, 97:28–31, 2000.
[39] Robert B. Laughlin. A Different Universe. Basic Books, Cambridge, 2005.
[40] Y. C. Lee and W. Zhu. The principle of minimal quantum fluctuations for the time-dependent Schrödinger equation. J. Phys. A, 32:3127–3131, 1999.
[41] J. M. Levy-Leblond. Nonrelativistic particles and wave equations. Comm. Math. Physics, 6:286–311, 1967.
[42] F. London. Quantenmechanische Deutung der Theorie von Weyl. Z. Phys., 42:375, 1927.
[43] H. Margenau. Quantum-mechanical description. Physical Review, 49:24–242, 1935.
[44] H. Margenau. Measurements in quantum mechanics. Annals of Physics, 23:469–485, 1963.
[45] B. Mashhoon and H. Kaiser. Inertia of intrinsic spin. Physica B, 385-386:1381–1383, 2006.
[46] M. Morrison. Spin: All is not what it seems. Studies in history and philosophy of modern physics, 38:529–557, 2007.
[47] L. Motz. Quantization and the classical Hamilton-Jacobi equation. Phys. Rev., 126:378–382, 1962.
[48] Roger G. Newman. Probability interpretation of quantum mechanics. Am. J. Phys., 48:1029–1034, 1980.
[49] Hans C. Ohanian. What is spin ? Am. J. Phys., 54:500–505, 1986.
[50] M. Peshkin and A. Tonomura. The Aharonov-Bohm Effect. Lecture Notes in Physics. Springer Verlag, Berlin, 1989.
[51] A. B. Pippard. The interpretation of quantum mechanics. Eur. J. Phys., 7:43–48, 1986.
[52] Karl R. Popper. The Open Universe - an Argument for Indeterminism. Rowman and Littlefield, Totowa, 1982.
[53] M. Reginatto. Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information. Phys. Rev. A, 58:1775–1778, 1998.
[54] M. Reginatto. Derivation of the Pauli equation using the principle of minimum Fisher information. Physics Letters, A 249:355–357, 1998.
[55] N. Rosen. The relation between classical and quantum mechanics. Am. J. Phys., 32:597–600, 1964.
[56] A. A. Ross-Bonney. Does god play dice ? - a discussion of some interpretations of quantum mechanics. Nuovo Cimento, 30 B:55, 1975.
[57] E. G. P. Rowe. Classical limit of quantum mechanics (electron in a magnetic field). Am. J. Phys., 59:1111–1117, 1991.
[58] S. M. Roy. Condition for nonexistence of Aharonov-Bohm effect. Physical Review Letters, 44(3):111–114, 1980.
[59] R. Schiller. Quasi-classical theory of the nonspinning electron. Phys. Rev., 125(3):1100–1108, February 1962.
[60] R. Schiller. Quasi-Classical Theory of the Spinning Electron. Phys. Rev., 125(3):1116–1123, February 1962.
[61] Erwin Schrödinger. Quantisierung als Eigenwertproblem, Erste Mitteilung. Annalen der Physik, 79:361, 1926.
[62] H. Shirai. Reinterpretation of quantum mechanics based on the statistical interpretation. Foundations of Physics, 28:1633–1662, 1998.
[63] J. L. Synge. Classical Dynamics, in Encyclopedia of Physics: Principles of Classical Mechanics and Field theory, pages 1–223. Springer, Berlin, 1960.
[64] J. Syska. Fisher information and quantum-classical field theory: classical statistics similarity. phys. stat. sol.(b), 244:2531–2537, 2007.
[65] T. Takabayasi. The vector representation of spinning particles in the quantum theory I. Progress in Theoretical Physics., 14:283–302, 1955.
[66] Y. Toyozawa. Theory of measurement. Progress of Theoretical Physics, 87:293–305, 1992.
[67] H. R. Tschudi. On the statistical interpretation of quantum mechanics. Helvetica Physica Acta, 60:363–383, 1987.
[68] J. H. Van Vleck. The correspondence principle in the statistical interpretation of quantum mechanics. Proc. Natl. Acad. Sci. U.S., 14:178–188, 1928.
[69] R. F. Werner and M. P. H. Wolff. Classical mechanics as quantum mechanics with infinitesimal
. Physics Letters A, 202:155–159, 1995.
[70] H. Weyl. Elektron und Gravitation I. Z. Phys., 56:330–352, 1929.
[71] R. H. Young. Quantum mechanics based on position. Foundations of Physics, 10:33–56, 1980.