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Chapter 3

The Quantum State Vector and Physical Reality’

Peter G. Bergmann
Department of Physics, Syracuse University, Syracuse, N. Y., U.S.A.

Ensembles of physical systems obeying quantum laws can be con-
structed in a variety of ways. The properties of ensembles constructed in
the most common way may be summarized conveniently in terms of a
single state vector in Hilbert space, or of a density matrix, and this
circumstance might suggest that the quantum state represents indeed
the essence of the state in which an individual physical system finds
itself, just as this essence is provided in non-quantum physics by the
coordinates of a point in phase space. In this paper it is shown that the
properties of more general ensembles cannot be summarized in terms of
state vectors or density matrices. In view of the fact that the assertions
of quantum theory generally refer to statistical properties of ensembles,
not to individual systems, it is contended that the identification of
individual systems with specific quantum states is questionable.

This paper represents the further development of a line of exploration
that was begun several years ago2. This earlier paper was concerned with
the claim by voN NEUMANN 3 that quantum measurements always lead to
an increase of the dispersion, and hence of the entropy of ensembles of
quantum systems. This monotonic increase, we showed, depends on the
manner in which the ensemble is constructed. If the selection of systems
to form the ensemble depends exclusively on a screening preceding in
time the measurements to be performed, then the very process of mea-
surement introduces an uncontrolled interaction of the systems with the
apparatus of the experimenter, and the increase in dispersion is required
by the theory, as it is intuitively acceptable. But we showed, by con-
structing explicitly alternative ensembles, that for one class the entropy
decreases monotonically in time as the result of measurements, whereas

1 This work has been supported in part by the Air Force Office of Scientific
Research and by the Aerospace Research Laboratories, Office of Aerospace Research.

2 AnaroxNov, Y., P.BERGMANN, and.J. LEBowITZz: Phys. Rev. 134, B1410 (1964).

3 NEUMANN, JoHN VON: Mathematical foundations of quantum mechanics.

Princeton: Princeton University Press 1955. (Translited from the German original
by R. T. BEYER.)
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in more general situations the change in entropy is not monotonic in
cither direction.

Incidental to this principal thesis we pointed out that the assignment
of a quantum state to a given system appears ambiguous. The purpose of
the present paper is to elaborate this argument. In the conventional
quantum theory of measurement an ensemble that has been obtained by
the screening of systems of a given type in accordance with the outcome
of a measurement of an observable A, in which the ensemble is to consist,
say, of all those systems in which 4 is found to have the numerical value
a, one assigns to the members of this ensemble the state |a). (It is
assumed that a is a non-degenerate eigenvalue, and similar assumptions
will be made in all that follows.) That in a subsequent measurement of
the observable B the eigenvalue b, will be observed will occur in a
percentage of cases given by the absolute square of the product of the
two vectors |a) and | b, ),

P(b,) =<a| by <{b;|a). (1)

This expression is bilinear in |b,) and its dual ¢b,|. The coefficients of
this bilinear form, the idempotent matrix |a) (a|, depend only on the
selection procedure employed in constructing the ensemble on which
measurements are to be performed. This is why the state |a) appears to
be characteristic for the ensemble as such, and an intrinsic property of
its member systems. The replacement of the matrix |a){a| by a more
general density matrix in the event of partial incoherence is well known
and does not need to concern us now. Suffice it to point out that the
density matrix, also, is contingent on a screening procedure preceding
in time all subsequent manipulation of the physical systems composing
the ensemble, a procedure which is merely less rigorous than confinement
to one non-degenerate eigenvalue of an observable.,

In what follows we shall be concerned with generalizations of the
screening procedures. To avoid verbal ambiguities, we shall denote all
probabilistic assertions of quantum theory by the term ‘‘assertion’’ if
no time sense is to be implied. The term “prediction” will be reserved

for assertions cancerning the outcome of measurements in the future, and .

“retrodiction” for assertions concerning past observations. The standard
formula (1) refers to predictions in the narrow sense. It can be extended
to apply to a series of consecutive measurements of observables
B, C,..., F. The frequency with which the eigenvalues b,, c,,, ..., f will
be obtained is given by the expression:

Py, ) =<F] o> oo €l B Bl ] <a] B> Bl ) oo o[ 1D (2)

The expression (2) is still part and parcel of the conventional approach
to the quantum theory of measurement in that the screening observation
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of . precedes in time all other determinations, about which the prob-
abilistic assertions are being made. It incorporates, among other facets,
HEISENBERG'S uncertainty relation, in that the probability of obtaining
the specified sequence of results cannot be zero or one if adjacent ob-
servables have non-vanishing commutators. Incidentally, in order to avoid
intermediate transition matrices, Eqgs. (1) and (2) have been written
down for observables that are constants of the motion, though not
necessarily time-independent. As any observable can be converted triv-
fally into a (time-dependent) constant of the motion, this restriction is
formal rather than substantive.

Expression (2) may now be employed to obtain assertions referring to
ensembles that have been obtained by means of multiple screening
procedures. All the essentials are exhibited by an ensemble that consists
exclusively of systems in which the initial measurement, of 4, has led
to the value @, and the final measurement, of F, to the value f. This
ensemble is clearly a subensemble of the one screened exclusively with
respect to the initial measurement, of A. Assertions concerning the inter-
mediate observables B, C, ... may be obtained readily by the standard
techniques of contingent probabilities. For these frequencies we get the
expression

P(by, Cp» o) =D D Cenl by el @y <albyy o Cne| B
D=2 Z...<f|...>...(cm,lbk.>(bk»|a><a|bk.>... amny

k'’

(3)

This expression is not multilinear in terms of the kets and bras corres-
ponding to the possible outcomes of the intermediate observations,
because of the denominator. Nor can it be written as the product of two
factors one of which depends only on the screening procedures, the other
only on the observations made on the resulting ensemble. Hence there is
no simple manner in which some expression may be considered to be
fully descriptive of the ensemble that has been constructed.

Because of the importance of the ensemble resulting from multiple-
time screening for the argument of this paper, it should be emphasized
that such ensembles are not without interest in experimental work.
Particularly in high-energy and elementary particle research, samples for
further analysis are frequently selected, by human scanning or by fully
automated procedures (e. g. master pulse techniques), with respect to
characteristics of both initial and final situations.

Ensembles constructed by two-time screening are not theoretically
inferior to those obtained by the more conventional procedures of pre-
selection. Ordinary quantum theory furnishes probabilistic formulas
that permit one to make assertions concerning the outcome of experi-
ments performed on these ensembles. But in some important respects
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‘they have properties not shared by pre-selected ensembles. Consider, for

instance, a two-time selected ensemble with two intermediate observa-
tions. If the observables corresponding to these intermediate observations
do not commute with each other, it does not automatically follow that
the product of their respective dispersions obeys HEISENBERG’S uncer-
tainty relation. Let, as an extreme example, the two intermediate
observables, B and C, be identical with 4 and F, respectively, with
respect to which the ensemble was screened,

B=A, C=F, [B,(C]=+0. 4)

The value of B will then be found to equal a, and that of C to be f, for
all members of the ensemble. Hence the dispersion of the observations
on B alone, and of those on C alone, will separately vanish, in apparent
contradiction to the HEISENBERG relations. The real import of this result
is, of course, not a logical contradiction but merely an injunction to be
circumspect in the formulation of the uncertainty relations, which hold
but for a limited class of ensembles.

I shall now return to the various roles that are played by the state
vector of a quantum theoretical ensemble. First, it is part of the charac-
terization of a type of physical system that one must construct the partic-
ular Hilbert space in which its observables are defined formally as
Hermitian operators. This Hilbert space, being a linear vector space,
defines a class of mathematical objects that are its constituent vectors,
regardless of what additional physical meanings may be assigned to
them. The present investigation changes nothing in this respect.

In the Schrodinger picture the kets are also the carriers of the dynam-
ical law of the physical system this role is not sacrosanct, considering the
case with which the dynamics can be fastened on the observables, in the
Heisenberg picture, which not only resembles in this respect more closely
the approach of classical mechanics but which, according to P.A M.
DIrAc!, is preferable at least in some respectsin quantum electrodynamics.

There remains the importance of the state of a system as a particular-
izing characteristic that sets it apart from other systems possessing the
same structure (i. e. dynamical law) but happening to be “in a different
state”. This aspect of the state vector is shared by the Schrédinger and
Heisenberg pictures as well as by other intermediate pictures. That the
state vector has this function, the function carried in classical mechanics
by the representative point in phase space (i.e. GIBBS’ “phase’”’), is
suggested by the circumstance that into the predictions concerning
conventionally constructed ensembles the state vector of the systems
enters as the only particularizing piece of information that is independent
of the choice of the measurements to be performed. Surely, the state

1 Dirac, P. A. M.: Several public lectures, 1965 and 1966.
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vector, or its generalization, the density matrix, are appropriate means
for the characterization of ensembles that have been constructed by
means of one-time screening prior to the onset of measurements.

For ensembles constructed by means of terminal one-time screening
the state vector also is a proper means of characterization, and the only
piece of information required for retrodiction. We have pointed out in
Ref. 1 that in this case the ensemble is in the “‘state’ established by
subsequent screening, whereas in the conventional ensemble the state
depends on the preceding screening. Two-time screening confronts us
not with mere ambiguity; these ensembles simply cannot be described
in terms of any one state vector or density matrix. This negative result
tends in my opinion to undermine the significance of the state vector for
the individual system as well.

The assignment of a state vector to a physical system operationally
implies no more than the prediction of frequencies of outcomes of ob-
servations to be made subsequent to the establishment of a specified
state. These predictions then refer not to individual physical systems but
to ensembles composed of such systems, and moreover only to the class
of ensembles constructed by means of one-time screening. Of course,
ensembles are not objects occurring in nature but constructs of our
intellect; what occurs in nature are individual physical systems. Systems
may be imbedded in conceptual ensembles, or sets of real systems may be
combined for purposes of discussion into ensembles. Experimental veri-
fication of the statistical assertions of quantum theory is based on the
latter procedure. Because of the specialized character of one-time
screened ensembles it appears open to question whether a means of
characterizing such ensembles should be considered an intrinsic property
of the component physical systems.

If the assignment of quantum states to individual physical systems
is abandoned, the problematics of the change of quantum state as a
result of the performance of measurements, i. e. the so-called collapse
of the wave packet, evaporates. The performance of a measurement, and
the use of its outcome as a means for additional screening, replaces the
original ensemble by a subensemble, with its own statistical dispersion.
The apparent resolution of the problems surrounding the extradynamic
change in the quantum state of a system should, however, not be con-
sidered an unmitigated triumph. This advance is achieved only at the
price of having to give up what hitherto has been considered the principal
particularizing property of a quantum-theoretical physical system; no
substitute is in sight.

Certainly, I do not consider that the discussion presented here leads
to any definite conclusions. I believe that it calls attention to a possible
novel point of view, whose import remains to be assessed.

™ S

Chapter 4

Probabilities in Quantum Mechanics’

Henry Margenau and Leon Cohen?

Department of Physics, Yale University, New Haven,
Connecticut, U.S.A.

This note seeks to survey crucial issues and to pinpoint difficulties
in the current controversy over the meaning of measurement [I] and
its proper mathematical description in quantum physics. It deals pri-
marily with those philosophic and mathematical considerations which
arise from the statistical nature of the results of physical measurements.
The first part reviews and aims to clarify matters of more or less general
interest; the second and third are devoted to some specific recent re-
sults concerning joint probabilities and phase-space distribution func-
tions.

I. One of the important features of quantum mechanical description
is the scattering, the dispersion of measured values in repeated observa-
tions of a given quantity even when the physical state (yp-function) of the
system, which is the carrier of the quantity, is as precise and determinate
as human ability permits. This fact has occasioned a variety of philoso-
phical explanations: BoHR’s and HEISENBERG’S early belief that the
statistical dispersion inherent in a quantum mechanical state is the
reflection of the uncertainties introduced by the necessary interaction
with the measuring apparatus which occurs at the time of measurement;
DE BroGLIE’s and BoHM’s suggestion that obscure factors not appearing
in the analysis (hidden variables) account for these fluctuations; HEISEN-
BERG’S later appeal to the Aristotelean theory of potentia [2], according
to which the measurement of an observable in a state other than its
eigenstate converts a potential quantity into an actually existing one;
the distinction between ‘“‘possessed’” and ‘‘latent’ observables [3], which
formulates a new version of the philosophic contrast between primary
and second ary qualities.

1 Work supported by the United States Air Force Office of Scientilﬁc Research
under Grant AFOSR 843/65.
2 Now at Hunter College of the City University of New York.
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The scattering of observations, and hence the use of probabilities,
is of course not confined to quantum mechanics. Even in classical physics,
analysis of the measurement process is meaningless without a theory of
errors. The distinction between the two fields is thought to reside in the
circumstance that the probabilities of classical physics are ‘“‘reducible”
[4], whereas those of quantum mechanics are not. That is to say, classical
physics is in principle compatible with the assumption that knowledge of
a system’s state can be so refined that every conceivable physical
quantity has an exact value, one which recurs in every measurement, so
that the probability of the occurrence of any namable value is “reduced”
either to zero or to one.

Max Borx~ [§] has advanced an interesting argument which makes
this statement a little artificial. Even in classical physics, he insists, the
use of precise values of observables, unencumbered by probabilities,
involves an idealization which defeats itself. It is surely not proper to
assume exact knowledge of the instantaneous positions and velocities of
all the molecules of a gas. A more reasonable premise is to assign to the
values of these quantities small errors. This admission, however, opens
the floodgates to ignorance, which develops in time. For the error
attaching to position and velocity of a molecule increases in every col-
lision, Roughly speaking, the relative error is doubled, and it is not
difficult to see how long it will take for the error to grow to the magnitude
of the quantity itself. If we start with an implausibly small error of one
millionth of 1% in the knowledge of the original velocities, our knowledge
will have been converted to ignorance in much less than one microsecond
for a gas under standard conditions. In general, what physicists call
relaxation time is also the time required for knowledge to be converted
into ignorance in problems of this sort.

Such reasoning is of great practical importance, but it does not
change the fact that classical physics, with its use of precise states,
remains internally consistent and allows probabilities to be in principle
reduced to certainties. Even the argument just cited is predicated upon
the functioning of exact laws controlling the evolution of exact mechanical
states whose incidental description or knowledge transcends our com-
petence. No inherent principle of nature prevents us from ascertaining as
exact a value as we please of the position and velocity of a single molecule
at a given time, and there are ways in which we can study its behavior
during an interval much smaller than the relaxation time, so that a dy-
namic account of its motion is possible. This leaves the distinction
between quantum mechanics and classical physics as profound as ever;
nor was it the intention of BorN, whose genius recognized it before all
others, to deny it. His example serves to show forth the universal
importance of probability.
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Measurement is always a statistical affair. No single observation can

be trusted to yield what goes as the ‘‘true’ value of a physical quantity.
Perhaps it is not amiss to sketch briefly how that “true’ value is estab-
lished. :
Suppose we are making N measurements of a given quantity with
the same apparatus. If N is sufficiently large, these results enable us to
construct a curve, usually a Gauss error curve, which has a certain
maximum and a certain half width. The half width is related to the
probable error of the set of measurements, and the maximum of the
curve defines the true value of the quantity. If the curve is indeed an
error curve, then it may be shown that the arithmetical average of all
the measured values are equal to the maximum of the curve. If N in-
creases, the curve retains its width but it is possible to place the points
more accurately upon it and thereby to define the maximum, the true
value, more precisely. Hence, the probable error remains no matter how
large the value of N.

To reduce the width of the curve different measuring apparatus must
be employed and the more precise the measuring device the narrower
the curve which results from the measurements. Thus arises the question:
Is it possible within reasonable limits to choose different measuring
instruments of increasing precision in such a way that the width of the
curve becomes smaller and smaller but falls each time within the range
of the preceeding grosser curve? For instance if we are to measure the
length of a given object, the first device might be a carpenter’s rule,
the second a carefully calibrated yardstick, the third a Vernier caliper,
the fourth a traveling microscope, the fifth an interferometer device, and
so forth. In classical physics it had always been assumed that this kind
of convergence, the nestling of successive error curves of smaller and
smaller widths within the larger, was a fact of nature. Quantum me-
chanics revealed that there exists no set of measuring apparatus of
progressive refinement which will make this kind of convergence true.
In the fine-grain domain of atomic physics, errors cannot in general be
confined to preassigned limits, and this is because of HEISENBERG’S
indeterminacy principle, which we shall now briefly consider.

In the form Az - A ¢ =%[2 the uncertainty principle is said to relate
the “‘error”’ in the measured momentum g to the “‘error” in the position ¢
of a particle. Physicists understand the application of this inequality
very well and employ it without difficulty, but the explanation they
give of it, especially in textbooks, is often highly questionable. Some-
times, major atrocities are committed in its name.

The most prevalent simple view concerning the origin of uncertainty
in quantum mechanics holds the disturbance during the measurement
process responsible for it. The y-ray microscope carries much persuasive
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force in this line of reasoning: To measure ¢ accurately one needs a
short wave iength y-ray, and this produces, by way of the particle’s
recoil, an uncontrollable and unpredictable effect upon its momentum;
hence a g-measurement entails an unavoidable error in gz, and vice versa.
Now all this, and the neat algebra that usually goes with the discussion,
are certainly correct, but what they have to do with HEISENBERG'S
principle is far from clear. Four very elementary difficulties emerge at once.

The inequality asserts that in any state of the particle that is at any
instant of time, and whether a measurement is being performed or not,
the uncertainties or errors, cannot be smaller than it specifies. According
to the disturbance theory, however, where 4 2 is due to the measurement
interaction, it can only refer to the state of the particle affer the measure-
ment, while 4 4 relates to the position before. To contradict this inference
would be to hold that measurements do not reveal what is, but what will
be, or that they can play either role.

The second difficulty lies in the use of words like “‘unpredictable”
and “uncontrollable”. The disturbance theory has a decidedly classical
cast; it pursues the interaction of the particle with the photon in com-
plete classical detail, and if it were consistent it should admit both the
controllability and the predicability of the results, for they are provided
by electrodynamics. But here, as a concession which completely sur-
renders the point at issue, it interposes a hiatus and brands the inter-
action mysterious. The argument therefore begs the question.

Thirdly, the disturbance theory — unless it is taken as an inductive
exemplification or merely as an illustration of the uncertainty prin-
ciple — violates logic. Surely, quantum mechanics is a wider discipline
than classical physics, based upon axioms additional to those which
underlie the latter science. In other words, classical physics is a limiting
case of quantum mechanics. Hence it can not possibly contain it logically

since its range is smaller, and one cannot use classical reasoning to derive
the uncertainty principle.

Finally, there is trouble with the definition of the 4 symbol. Errors,
as we have seen, have no meaning with respect to a single measurement;
being deviations from a mean they necessarily presuppose an ensemble
of values. Thus, unless the y ray microscope story is extended to embrace
a great number of interactions between a particle and a photon and 4 is
understood to refer to the statistical deviation of the results, the dis-
turbance hypothesis is without relevance. If it is so extended, then it
becomes unclear why only in the majority of instances, and notin all, an
energetic photon causes a large disturbance, for there are results for
which the deviation from the mean is very small. To us there appears no
way in which all four difficulties can be removed.

Probabilities in Quantum Mechanics
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Besides the disturbance theory, there is another popular simple
conjecture which is invoked to explain uncertainty, again within the
frame of the conventional pictorial concepts of mechanistic physics.
Here the approach is operational; it is said, and made plausible by
numerous examples, that it is instrumentally impossible to measure 2
and ¢ simultaneously; the hardware clashes. This claim is expanded to
cover all non-commuting observables: failure of operators to commute is
supposed to symbolize experimental incompatibility of measuring proce-
dures. When coupled with the doctrine of disturbance, the claim renders
a rather pleasing account, for if # must invariably be measured before
or after ¢, the effect of the interference can not be avoided.

The outlawing of simultaneous measurements, however, entrains its
own peculiar infelicities. In the first place, there is no consideration
whatever which prevents an experimenter from letting a particle reflect,
at the same time or as nearly the same time as he pleases, a soft X-ray
and a hard y-ray. He can thus obtain numbers to be assigned to z and ¢,
and this belies the thesis barring simultaneous measurements. To be
sure, the simultaneous values for z and ¢ thus obtained — whose errors
escape our knowledge because there is no ensemble — can not be used
as premises for causal prediction, they are without interest by them-
sclves, and they do not define at quantum mechanical state. But they
are available, and this makes the claim under examination palpably
false.

But it exhibits a further, even more serious philosophic flaw. Science
is the rational accomodation of contingent facts or observations. A
theory which prescribes what can in the future be achieved or, worse,
proscribes specific empirical acts, like simultaneous observations of 2
and ¢, transcends its own competence by restricting the development
of experimental techniques. It becomes legislative when it should be
explanatory. For these reasons it is necessary to look deeper into the
bases of indeterminacy, and this forces us to renounce the encrusted
habits of visual pictorization of elementary events, to relinquish the
attempt to explain quantum uncertainty in terms of the familiar notions
of conventional particle trajectories or wave propagation. Although it is
heresy to say so, we believe that there is no dualism, no complementarity
in quantum physics. The electron is neither a particle nor a wave, even
if our accustomed language induces us to use these words. They are,
strictly speaking, metaphorical and allude to something whose descrip-
tion exceeds the bounds of visual perception and is therefore obliged to
discard such concepts as particles and waves, except as imperfect models
of reality. Classical physics developed in the aegis of Cartesian clarity,
its concepts answered the question: What can the mind’s eye imagine?
Quantum mechanics was born out of concerns characterized by the
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question: What can be measured? It has now left this area and has
begum to ask: What can be conceived abstractly, but with mathematical
and logical consistency ?

After this digression we return to a correct, if minimal, interpretation
of the uncertainty principle, which, though short of serving as an
explanation, goes far in showing the inadequacy of the foregoing views.
If one follows through the mathematical derivation of the formula,
Ap - Ag=%/2, the meaning of 44 and 44 becomes very clear; they
represent the standard derivations, or the square root of the variances,
of sets of repeated observations of # and ¢ when the system (loosely
speaking, the particle) is in an arbitrary but definite quantum state y.
For example, we prepare the state of the system at time ¢, by passing it
through a filter, or through a Stern-Gerlach field, or merely by waiting
until an atoms has settled to its lowest energy state. Then, at time
t, +7, we perform a measurement of g, obtaining a value g,. What
happens to the system after £, 4+ v depends on the manner in which the
measurement was made, and knowledge of g does not in general permit
its prediction. Different interactions may change 9 in many different
ways; what is important from the point of view of the measurement is the
number g;.

To procedure an ensemble, the system must be reprepared at a laier
time £,. A second measurement of £ is then performed at ¢, 47, and the
result is g,. In this way, by » repreparations and measurements, we
obtain the set of numbers g, #, ... #,,. By a corresponding procedure
we can generate a set ¢, ... ¢,. The principle asserts that the standard
deviations of these #’s and these ¢’s satisfy the inequality, for any y.

From this discussion it becomes apparent that the “‘error” in ¢, or
A ¢, can not be caused by the disturbance wrought in the measurement
of any g, for the system was in each instance reprepared. Nor does it
matter in what order the values appear, or in what manner the ¢-
measurements are interspersed among those of 4.

A succession of repeated preparations creates an ensemble, the
instances of which are formed by one (perhaps the same, although this
can rarely be guaranteed) system in the same state at different times. One
might call this a time ensemble. Quantum mechanics is known to apply
tospace ensembles too. These are present when many systems, each in the
same state, and isolated from each other, are present at the same time and
the measuring device interacts with themall. A single observation will then
vield the set #, ... #,,, where m is now the number of systems present.
Another single observation gives ¢ ... ¢,,. Indeed these observations can
also be performed at the same time. In practice, the space ensemble is
of more common occurrence, but the uncertainty principle holds for
both.
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In the sequel we shall designate this just preceding account of the
principle as its standard version. Whether it admits other interpretations
is at the moment not clear.

We now examine briefly the logic of the probability concept as it is
employed in quantum mechanics. As is well known, there are two
extreme, basic approaches to the meaning of probability [5]. One, some-
times called a priori or subjective, establishes probability as a measure
of the degree of confidence or expectation which a person may have in
the outcome of an event. Its first mathematical formulation was given
by LAPLACE, and one of its contemporary advocates is H. JEFFREY [6].
When viewed in this way, probability becomes in principle untestable
and, at least in its most elementary sense, it changes with incidental
evidence concerning the event. For instance the appearance of a number
from 1 to 6 when a die is thrown is known to be § before this event. It
probability is lodged in one’s knowledge with respect to the outcome of
the next throw, its value changes from % either to 1 or 0; the event
“reduces” it to certainty. There are ways of escaping this conclusion
even while maintaining the subjective interpretation, but they are not
interesting here because it is just this conclusion, which springs from the
most radical subjectivism in the logic of probability, that has left an
imprint on the philosophy of quantum mechanics.

The principal representative of various objective views is the fre-
quency theory, which holds probability to be the relative frequency of
the occurrence of a specified event, or of a set of events, in a large
aggregate of occurrences. The probability of throwing a 5 with a die i3
defined as the ratio of the number of times a § appears in a series of
throws to the total number of throws. Although this ratio fluctuates as
the number of throws increases, and indeed never attains a limit in the
ordinary mathematical sense, it has become possible to define it with a
precision sufficient for successful use.

It may not be out of place to emphasize here that probability in the
latter sense, is a measurable quantity, entirely on a par with every other
physical quantity. This needs to be recalled in order to counteract the
superstition that probability stalks like a ghost through science, that its
invocation is always a concession of ignorance. As a matter of fact, the
assignment of probabilities to the numbers on the faces of a die, if they
are understood in the objective manner, are attributes of the die which
are as real as its color or its size or its weight. The reason people regard
them otherwise is in the circumstance that probabilities can not be
observed in one fell swoop, in a single measurement. However, as our
earlier discussion shows, the other physical properties also require in
essence a large number of observations in order that their “true” values
be found. The psychological bias causing many to look upon probabilities
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as scientific citizens of second rank seems to stem from its lowly birth in
minds preoccupied with games of chance.

One last point on the general logic of probability. It is wrong to view
the subjective thesis as opposed to the objective one. Every physical
theory has necessarily a purely formal aspect and an operational one.
The former allows it to predict, the latter to confirm or refute its pre-
dictions [5]. The two logically disparate versions of probability here
reviewed are therefore complementary to each other, and the very
existence of these two required components is added evidence for the
normal and respectable status of probability as a physical quantity.

Our discussion of the uncertainty principle, in its standard version,
makes clear at once that the objective frequency interpretation is
relevant for quantum mechanics. If the state functiony has its postulated
meaning, it too must be given a frequency sense. This has several con-
sequences. First, since a relative frequency can never be determined by
means of a single observation, since one throw of a die does not determine
the next, there can be no presumption that a single observation of ,
1. e. a measurement, must establish its form, or modify it in a way fully
known, nor that is must determine the outcome of the next measurement.
The other consequence is that a single observation does not change the
probability in question at all. Objectively, whether or not a 2 appears in
the next throw of a die, the probability of its appearance goes right on
being £ afterwards.

Yet both of these conclusions are often violated when the meaning of
y is discussed by physicists. voN NEUMANN introduced the so-called
projection postulate; textbooks speak of the reduction of a wave packet
upon measurement ; these amount to the posit that a single measurement
has the effect of producing an eigenstate, namely one corresponding to
the measured value. This hypothesis has been shown to be untenable
elsewhere (references 4, 5 and literature cited thére) and its short comings
need not be exhibited again. It might be of some interest, however, to
speculate upon the reasons why this strange hypothesis has had such
persuasive force. -

One of them is surely psychological; the projection ideais a hangover
from classical physics, where every measurement (in a very naive sense
which is actually contradictory to the theory of errors) insures the same
outcome upon repetition. There, every measurement is also the prepara-
tion of a state. In quantum mechanics this need not be the case.

The other reason is mathematical. Quantum mechanics associates
operators with physical acts yielding numbers. Measurement itself re-
presents the most universal act of this type, and it is tempting to seek
an operator, M, which symbolizes it in universal fashion. Specific opera-
tors for specific measurements are already known. Now, what are the
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properties of measurement in general 7 To say that it always generates a
real number is not helplul in this search, for it yiclds an indiscriminate,
large class of operators. One may look upon it in another way, however.

A measurement puts a question to nature: does this variable have a

value within this given range ? The answer is either yes or no, it can be
symbolized as 1 or 0. Hence the operator, 3/, must have two eigenvalues,
M’, namely 1 and 0, and no more. These satisfy the equation 3/'?=A";
lence M must satis{y it also. But the operator, defined by M?*=2M is
known to be the projection operator, constructible for any state y in
well known ways. _

This somewhat formal success of the search for M entails a mathe-
matical conclusion. When M is applied to a vector in Hilbert space, say
@, it changes the direction of @ and reduces its magnitude so that it
becomes the component of @ in a new direction. In short, it projects a
upon some ray in Hilbert space. Physically, this means it creates a new
state. Hence the projection hypothesis.

The cogency of such reasoning is of course spurious. Even if M is
accepted as a valid symbol for a universal measurement, the application
of M to an arbitrary & need not be interpreted as the outcome of measure-

* ment upon a system in state @ at all. There is no warrant for this hypo-

thesis in the axioms of quantum mechanics. More serious, however, is the
identification of M with measurement in general. Why should there be a
valid symbol of a specific sort for every possible measurement process ?
In classical physics we have formulas for momentum, kinetic and poten-
tial energy and all other important observables. But do we have, or
need, a formula for an unspecified observable? Our suspicion is that it
would be trivial if written down.

We therefore end this section with the assertion that quantum
mechanics deals with measurable probabilities which take the form of
relative frequencies; that the interaction of a physical system with a
measuring device does not necessarily project its state onto an eigen-
vector in Hilbert space-but rather projects thath state into irrelevance.
As a rule, quantum mechanics ceases to have interest in the state of a
system after an observable has been measured upon it. There is no
single axiom which defines the post-measurement condition. Never-
theless, there are operations (e. g. correlation experiments) which insure
that a given observed value will always be associated, simultaneously
or in sequel, with a specifiable other value, observed or not. These,
however, are not governed by one basic axiom and require special treat-
ment. They are best viewed as single but compound measurements [7].

II. In section I attention has been confined to the probability that,
the state of a system being p, a measurement of an observable » shall
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give the eigenvalue r;. It is specified by the postulates of quantum
mechanics as ,
P(+9) =<l 7> P (1)

provided (y| »,> is the scalar product of the bra vector {y| and the ket
vector | »;», which is an eigenstate of » corresponding to ;. In the
preceding section we reviewed and criticised various hypotheses relating
to the measurement of two different observables, say @» and ¥ (e.g.
position and momentum), simultaneously or in sequence, and therefore
the question arises as to the probability that, when a quantum system
is in state, a mecasurement of 2 and one of y shall yield the eigenvalues
@; and y;. The cases in which y =, or ¥ = (= at a later time) are
included here. This introduces the concept of a joint probability, to be
designated by P(2;, ¥;;v). The ordinary postulates are non-committal
with respect to it construction, and here lies the mathematical root for
the disparity of views regarding what happens when 2 and ¢, for instance,
are being measured. Some philosophers of physics argue in fact that a
construct like P (2;, ¥,; ) is meaningless except when the operators for
x and y commute, usually by an appeal to the belief that joint measure-
ments for them are impossible. They are then inclined to devise non-
Aristotelean quantum logics which open unlimited vistas for speculation.
We have already given reasons to doubt this conjecture. If it were true
in the literal sense of every proper theory of stochastic variables, then it
ought to be possible to construct a joint probability, and furthermore
P(2;, y;;v) should be zero for every i+ and § when x and y do not
commute. At any rate, the search for possible formulations of a joint
probability function must not be foregone. If none exists, that is at
least worth knowing.

The search begins with a statement of the mathematical conditions
which a joint probability must satisfy. These are, positiveness of P,
(2) and (3, 4) the necessary relation to the marginal probabilities. They
have the form

P2, y;;9) 20, )
X P@.yiv) =Plyy v =Wyl (3)
S P@syiy)=P@ny) =<yl (4)

One may wish to irhpose further conditions, demanding that, when used
in the calculation of expectation values in the customary way, they
shall lead to the correct quantum mean; e. g. that

Exp (@) =>; P, y;v) &=z |p),

where @7, is the operator corresponding to the observable . This
greatly encumbers the scarch. We return to this problem in the following
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section and restrict ourselves here to conditions 2, 3 and 4 which seem
to suffice as a basis for a minimal theory of measurement.

A theorem of statistics relates the covariance of two random variables
x and y to their joint probabilities in the following way.

COV(wy)=£ZjP(ws,y7)ws y;—<@>{y)- (s)

As to notation, the covariance
Cov(zy)=(zy>—<@){y>

provided we use brackets to denote expectation values. Now quantum
mechanics immediately suggests that we write for (=~ ) something like
{p| Ty |p), x and y being the operators corresponding to 2~ and y, and
if this is done one can extract the form of P (2*;, y;, %) from (5). Certainly
{x) and {y) are known to be {y| & |y} and {y| y |v).

But the difficulty encountered here arises from the fact that the
product #y can be translated into quantum mechanics in many different
ways. What is needed is a rule of correspondence between a product like
@y, or in general &" p™, in which the factors commute and which is
directly observable, and its quantum equivalent. Here appears in very
specific form the fundamental epistemological problem of the relation
between direct experiences (P-plane of reference 5) and the constructs
that symbolize them in our reasoning about the world (C-field). In

- classical physics that relation was held to be a trivial isomorphism — the

construct temperature was the class of numbers provided by a thermo-
meter; however here the rules of correspondence become a matter for
deliberate choice and discrimination. More will be said about them in
part I11.

Suffice it here to record that a fairly obvious choice for @ y is obtained
by symmetrization [8]:
Tyt+yx

— .
Ty 5

This leads, via Eq. (5) to the result for the joint probability
P(@;, y;;v) =R[yled<z:| ¥ <{y;|p)] (6)

where R stands for “real part”. Formula (6) has certain attractive
features. It provides a correlation coefficient ¢ (x, y) defined by

o (@, y) =Cov (@ y) [Var (@) Var (y)]™ (7)
which satisfies the desired inequality

—1=o(@y)= +1

’ 6 Studies in the Foundations, Vol. 2
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for every == and y. It also conforms to Egs. (3) and (4), but unfortunately
it does not satisfy (2). P constructed in accordance with (6) is not in
general positive definite, as closer inspection (and various examples
worked out in reference 8) will show.

This one example, to which others will be added in the final section
of this paper, places in view the major difficulty which afflicts nearly all
formulations of P(2;, y,;%). There may be a deeper reason for that,
possibly hidden in strange and obscure features of the measurement
process which make it similar to creation and annihilation in field
theories!. At the moment, however, we shall take the stand that joint
probabilities which violate (2) are to be rejected.

One then observes that there is one P (2, y,; ), a trivial one, which
does obey all sum rules, (2—4), and which can be written down even
without the detour over covariances. It is

P(x;, v;9) =|<wl@d P |@lyD (8)

While mathematically adequate from the present point of view, it has
the fault of yielding no correlations between the random variables @
and y: Cov(@ry), constructed in conformity with (5) is zero, and so is
o (@, y). Must one therefore reject it ?

This may well be the case, but for reasons that are not yet wholly
clear. It is noteworthy, however, that formula (5) contains exactly the
proposition which was affirmed in our discussion of the standard version
of uncertainty. There we saw that the probability of measuring g, after
repreparation of the state on the time ensemble o7 in simultaneous observa-
tions on a space ensemble, was indeed independent of the measurement
of 4. Formula (8) describes that situation. It seems, therefore, that we
are in possession of a reasonable theory of measurement, which endows
joint probabilities with meaning, provided we accept the conditions
noted in part I; they are: an interpretation of uncertainty as standard
deviation of a set of measured values after repeated preparation of the
state 1, and the disavowal of a priori knowledge about the fate of the
quantum system after measurement.

We now turn to the consideration of a special class of joint distribu-
tion functions, namely P (¢, #;y), where ¢ and p continue to signify
position and momentum. These are phase space distribution functions.
Through g, the functional P depends also on the time ¢. In the next
section we employ a notation which lends itself a little more naturally
to the technical matters under discussion; we write

P, 2;9(t)) =F (4, 5,1)

1 This point was emphasized to us in conversation by Professor VIGIER.
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omitting the argument ¢ when the time dependence is otherwise clear.
Only one-dimensional systems will be treated; generalization to several
dimensions is easy but entails more cumbersome equations. Finally, use
of the ordinary notation, y (4, ¢) in place of (|4, ¢}, is simpler and will
therefore be adopted.

I11. The possibility of formulating quantum mechanics in terms of
ensembles in the phase space of position and momentum originated with
"ViGNER [9]. He found a function of position and momentum which
satisfies Egs. (3) and (4) for the case of g and p. The Wigner distribution
is

Ep(q,ﬂ)='217f1/’*(4—~;“rﬁ)e'””w(4+-;17‘1)dr- (9)

It can readily be verified that
JF (g, p(de=|p(a)|% (10)
[F(a.n)de=|pn)| (11)

where @ (#) is the momentum state function given by

#(6) =Ty [0l P2 dg (12)

and | p(#)|? the quantum mechanical probability distribution for mo-
mentum. Although F, does yield the correct marginal distributions, one
cannot say that F, is a true joint distribution of ¢ and p because it
does not in general satisfy (2). None the less, F, can be formally used, to
some extent, to calculate expectation values of quantum observables
using phase space integration. A different distribution function (studied
by MARGENAU and HirL [8]) is

F(g,8) =5 R{p() [ op*(g—vt) dx} (13)

where R signifies the real part of the quantity in brackets. This represents
another way of writing Eq. (6). If one assumes that position and momen-
tum are not correlated, then we are lead to take distribution (8) which

now reads Fylg, 2) =19 (9)[2] ¢ (2" (14)
Both (13) and (14) satisfy (10) and (11).

An explicit expression for the totality of functions of g and p which
satisfy (10) and (11) can be given [10, 11]. It is

F(%ﬂ.t;f)=i;1,‘;z‘fffe"""¢—"*ﬂ+"'9ux

f(i?,.r,t)qp*(u——%rh)w(u-{——;tﬁ)dﬁdtdu )

6*
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where / (&, 7, ¢) is any function which satisfies

10, 7. 6 =f(®, 0, ) =1. (16)

Thus / is the key to an indefinite number of phase space distribution
functions which can be generated via Eq. (15). That (15) is the set of all
functions constrained by conditions (10) and (11) can be proved by first
showing that a judicious choice of f will allow any function of gand p
to be written in form (15)%. Then the integration of F with respect to
p and ¢ forces the imposition of (16) on f if the result of the integration
is to yield (10) and (11). F,,F, and F; are obtained from (15) by particu-
larizing f to the value

fo=1 (17)
fi=cos 30 Th - (18)

fom vt le@)|2ef?etitrdedn
07 fyr(u—LtTh)efPup(uttTh)du

(19)

respectively.

The transition from quantum to classical mechanics can be made

very clear through the investigation of the time derivative of F, i. e. the
“equation of motion” which F satisfies. If (15) is differentiated with
respect to time and SCHRODINGER'S equation is applied toy, one obtains,
after a somewhat lengthy but direct calculation, the equation of motion
for F.

osdmiid)
OF (g 1, 1:) Gor | orr.

R =f(_;—a e )‘F(% a,t;f)
égp ' Owr
2 . @ . 0 . 0 . 0 )
R 2 § S IR, — I P
+ ’bf (t bar " 3/11=)f( Y oan’ . x . (20)
o [_J?_ AN _"L}
XS Ger ean ~ O# Oar
. 0 . 0 . 0 . 0 ) .
LA Cy Iy " I‘ ) ) tr
X /(t oqr T o9 't oLF + ory H(g.2) F(g,n N
where I operate on H only and -;a~— 2 on F. H(g, p)
dan * Oty oar ' Opr

is the classical Hamiltonian. Now, suppose we choose f as a function of %

1 By taking the Fourier transform of (15) we have

9. 7.0 = - [[F(q ptei®etitrdgdp
o w0 = fyre—%th eyt rh)du

Thus for any well-behaved 17, we can find an f so that (13} is satisfied. We must, of
course, also know @.
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such that
U (21)
lim f—0.
lim /-0 (22)
Since

.k
sin - ( )=>5 (),
Eq. (20) becomes, in the limit as & approaches zero,
oF 0H OoF o0H oF
B " og an T en oo 23)
which is LiouviLLE’s equation. The Wigner distribution and the dis-
tribution of MARGENAU and HiLL satisfy (21) and (22). But the distribu-

tion which shows no correlations, that is defined in Eq. (14) which resulst
from

1@, 7)= flw@2e@|ei®otitadgdn

Jo*u—%3th)etPvyu+iTh)du (24)

does not in general satisfy (21) and (22). Hence F, does not obey the
Liouville equation in the limit of Z—0. The reason for this failure is the
fact that the Liouville equation reflects the presence of correlations
while (14) admits no correlations in any limit.

As we have seen, the formation of the quantum mechanical operator
from its classical counterpart is straightforward as long as the classical
quantity is either a function of ¢ or of £ only, or if it is the sum of such
functions. One merely replaces z by the usual operator p and ¢ by q.
But if the classical observable contains product terms of ¢ and p, then
difficulties arise, for there is no unique way of forming the quantum
mechanical operator. Several methods have been proposed for dealing
with such cases. They are called rules of correspondence, and they were
encountered and commented on in section II. The following rules are
known and have been used.

a) Dirac’s rule:
(o, B}—>— + (4, B) (25)

where { , } is the classical Poisson bracket of &/ and # and [ , ] is the
commutator of the operators A and B

b) voN NEUMANN'’S rule:

If

oA
than for any function g
g()—>g(4)
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and if
: o7 —A
%—~B
then
7 +B—>A+DB

c) WEYL’s rule:
" m 1 S " " —
1 97”—;“(’)(1 tpmq'.
d) Rule of symmetrization:
1
"> (@' P +p" q")

¢) Rule of BorN and JORDAN:

kd
1 Z
q”ﬁ”’ 3 m41 opm ‘q”pl.

The first two rules have been shown to be inconsistent [12].

There is an intimate connection between correspondence rules and the
distribution functions F. As noted, this is due to the fact that a corre-
spondence rule enables the calculation of the moments {4 £™), which
in turn are generally sufficient to calculate the distribution function?.
Hence we expect that for each distribution function given by (15), we
can obtain a rule of correspondence. This is indeed the case. If g(4, #)
is the classical function, then it can be shown that the quantum mechani-
cal operator, G(q, p) is given by

Glg.p)=fl y(® 1) {8, v) &2+ "Pad dT (20)

where y (&, 7) is the Fourier transform of g (g, ) and f (9, 7) satisfies (16).
An additional condition which must be imposed on f to assure that G is
hermitian is

{(@, 7) =f* (=9, —7). (27)
Proof of these statements can be found in references 10 and 11.

1 This is done by forming the so-called characteristic function M (8, 7) from the
moments,

0 “ﬂ "l m
M@= > L.

", m=

The distribution function, F, is then
1 . .
e ff M (8, 7) g%t P dry.

See any standard text in probability theory.
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Different choices of f yield different correspondence rules. Actually
(26) generates all possible correspondence rules in the sense that once
we have decided that

" —q" (28)
and
2 =" (29)

for all #, Eq. (26) gives the only possible choices of G which reduce to
(28) or (29) when g (¢, £) =#" or 4". The Weyl rule, or the symmetriza-
tion rule, and the rule of Borx and JORDAN can be obtained from (20)
by taking
1 sinidvh
f=1, cos-, 97h, ,}%_:9_%_5_1
respectively. The choice of
__sin id%th
f= Isth

when substituted in (15) yields the distribution function

2 1 —irpa—idg+idu
F(%ﬂ)=a‘z?szf£——§?"“
sinidrh-p*(u—trh)yp(u+irh)dddvdu.

(30)

Having at our disposal the set of all possible correspondence rules, it
is natural to ask whether any one of them can be applied in a consistent
manner. By this we mean the following: In quantum mechanics the
operator which represents a function, say K, of the operator G(q,p) is
K (G(q, p)). Classically the observable which represents a function of
g (4, #) is also K (g (¢, #)) . Now, is it possible to find a rule of correspon-
dence such that the same rule can be used not only to obtain G(q, p)
from g (4, #) but also K (G(q, p)) from K (g (4, #)) ? The following discus-
sion will show that the answer to this question is no. ‘

The question is tantamount to asking: can quantum mechanics be
formulated as a normal stochastic theory? The fact that Eq. (15)
generates all distribution functions which satisfy (10) and (11) leads us
to consider the possibility of formulating quantum mechanics as a
classical stochastic theory. If this could be accomplished then some of
the ‘“‘paradoxical”, or better, novel statements of quantum mechanics
could be cast in more conventional language with the possibility of their
resolution in terms of classical concepts. Let us list the requirements
which the distribution function, F (¢, #, f), must satisfy if quantum
mechanics is to be cast as a classical probability theory.

They must include the conditions 2, 3 and 4 which served as the basis
for our discussion of measurement theory, but they also require that the
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formation shall yield the correct quantum mechanical expectation values
for all observables. We therefore make the following more stringent
demands. '

a) Since the distribution F should be a probability function, it must
be non-negative definite for all values of gand .

b) The distribution function must yield the correct quantum ine-
chanical marginal distribution functions, as before.

[F(q ) de=|p(9)|
[F(q 0 de=|p(e)|*

As these were the conditions used to built up the set of functions given
by Eq. (15), we automatically know that any F does indeed yield the
marginal distributions, provided condition (16) is satisfied by /(8, 7).

c¢) The expectation values of observables obtained through phase
space integration, using F, must give the same results as would be
obtained by use of the quantum mechanical methods. That is, if g(4, 2)
is the classical function to which corresponds the quantum mechanical
operator G (q, p), then we require that

<) @|Gla.p |v=lgls£)Flg.r)dedn
and also that, for any function K,
c) | K(Gla.p) |ly>=JIEK(g(4 #) Fle 2) dede.

Condition c,) can always be satisfied. But once an F is chosen to satisfy
¢,), this same F cannot be used to calculate the expectation value of
K (g(4, #)). Hence c,) cannot in general be satisfied of c,) is true. The
proof can be found in (11).

These results also answer the question we raised. For it is clear that
if it were possible to find an f such that

g(q, #)—>G(q, p)

K (g(a 2) K (G(q, P))

then ¢;) and c,) would be compatible for the same /.

and

We believe that these considerations, and the proof to which we have
referred, definitively settle a question which has been asked and answered
inconclusively in many different ways. Our answer does not, however,
imply that no joint probability distribution exists which is compatible
with the uncertainty principle for position and momentum. For example,
F, of Eq. (14), mects all the requirements of a probability distribution,
and vet the uncertainty principle does follow from it 8.
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