Can Quantum M echanics be shown to be Incompletein Principle?
Abstract:

The paper presents an argument for the incomplegeire principle of quantum mechanics. |

introduce four principles (P0-P3) concerning theerpretation of probability, in general and in

guantum mechanics, and argue that the defendesnopleteness must reject either PO or all of P1—
P3, which options both seem unacceptable. The gmolid shown to be more fundamental than the
measurement problem and to have implications far woderstanding of quantum-mechanical

contextuality.
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1 Introduction

Einstein, as is known, held that quantum mechaisiaan incomplete description of its domain of
application. He contributed much to the researckimgghis claim precise — in the EPR argument and
beyond. Can quantum mechanics (QM) be regardech@smplete? Today, the question is well
researched and is answered as follows: Yes, itbeaso regarded, but only with highly peculiar
consequences. The completing structure of hiddeiablas cannot be one of context-independent
variables and, for a system with space-like sepdratibsystems, must lead to nonlocal dependencies
among the variables. But Einstein’s original pasitis ill-captured if we portray it as a quest floe
possibility to take QM as incomplete. Einstein dat, as if out of fondness for classical physwant

to regard the new theory as incomplete. Rathethdweght that ihad to have this feature — because of
its probabilistic structure. This intuition of a gessary or structural incompleteness of QM has
received less attention in the literature tharegedves. In this paper, | want to explore it andgform

it into a substantial argument.

My question is:Can QM be shown to be incomplete in principle? Unconditionally, the answer is
probably no. QM has a widely accepted axiomatiasbtsat is sufficiently vague to be compatible
with the standard expression of completeness. Tamrehowever, natural ways to make one of the
axioms precise principles of interpreting probabilities in a physical theerypon which QM can be
shown to be in a conflict with that standard expi@s Conditional upon these principles, | suggest,
the title question of this paper must be answenetthé affirmative. What this result shows is tha t



price for assuming completeness is far higher tantend to think. Moreover, it has interesting
implications for the kind of contextuality that wenk is realized in QM.

The paper is structured as follows. | introduceseg. 2, the axioms of QM, in as neutral a fasli®n
possible, and a standard expression for completehgwesent, in sec. 3, four principles (PO-P3)
ruling the interpretation of one of the axioms aifidnecessary, motivate them. PO, the strongest
principle, has the special status that it seemglly true, but that, upon its rejection, we casame
QM to be complete. | discuss P1-P3 and show thakject any one of them, though logically
possible, has unacceptable consequences for QMréduer is warned that this (still preparatory)
section is long and patience-taxing. In sec. 4esent the main argument and show that, given BO an
P1, QM and the completeness assumption (COMPY gieontradiction. In sec. 5, | show that, given
we reject P1, QM +P0 + COMP make it unintelligibawv to maintain P2. In sec. 6, | show that, given
we reject P1 and P2, QM + PO + COMP make it probtento maintain P3. The upshot is that, if we
want to assume COMP, we either must reject POlaf &#1—P3. Since the former is unacceptable we
are left with rejecting the latter. But this sedikewise unacceptable. | suggest that COMP muskt fal
for principled reasons. In a concluding sectiort(§8, | sum up the argument and sketch implication
for our understanding of contextuality.

I should have liked to support Einstein’s intuitidny a succinct formal argument. Instead, my
argument is long, ramified, and often informal. &ke a whole bunch of preparatory remarks and,
beyond the main argument, explore more and morgcepossibilities. My apology is this. The main
argument, in sec. 4, is indeed short and forma,tlhe crucial principle (P1) will inevitably seem
naive and invite objections. A near century ofeaetlbn on the riddles of QM has reshaped our
conceptions of probability and measurement so asnéie P1 seem not only naive, but also
expendable. | will show that this impression istakgn, but to do so need supplementary arguments
of a less formal character. As the decisive axiér@M is open to so much interpretation, the formal
argument cannot stand on its own.

2 Axioms of QM and the standard expression of completeness

QM, | assume, is minimally encoded in the uncordgrsial portion of the usual set of axioms. In von
Neumann'’s projection operator formalism they cagiven as follows:

Al Any QM system S is associated with a uniqudétil spacer and its state is represented
by a unique density operator W (t) ena function of time.

A2 Physical quantitie\, B ..., (called observables) with values, &, as..., by, b, bs...
possibly pertaining to S, are represented by Hamitperator#\, B ..., with eigenvalues

&, &, &..., by, by, bs... on.

A3 S evolves in time according to W (t) = U (t) W) U (t) ™ where U (t) = exp [+1], a
unitary operator, is a function of time ahidis an operator representing the total energy
of S.

A4 If Sis in state W (t) and is an observable on S, then the expectation valze(t) is:
<A> (1) = Tr (W ()A)

A2 motivates an identification of physical obsenesband their mathematical representatives and |
will not need to distinguish them. | will also, f@implicity, restrict myself to one discrete and
nondegenerate observabke throughout. Finally, 1 will mostly restrict A4 t@robabilities, i.e.
expectation values of yes-no observables of Bpéwnhere, as usuaP,; is an operator projecting onto
the ray containingg] >). Leta, always be some fixed value of variabjeLet ‘[A] = a,’ abbreviate the
proposition that S has valag of A and let ‘p ((A] = a)’ mean the probability thaty] = a,. Then,
since <Py (1) = p (A] = &), A4 takes on a simpler, very familiar form:



A4’ If S is in state W (t) and is an observable on S with eigenvaiyethen the probability
that S hasy is: p (Al = a) = Tr (W (t) Pay).

(Variants of A4 go by the names ‘Born Rule’ or ‘Statistical Algbr’.) A4 itself will play a role
only in the discussion of principle P1 in the feliag section. In the technical argument, it wilffie

to use the special case ‘AMlote that the latter leaves implicit and thusleacthe role of parameter t
on the left side of the equation. This defect Ww#l remedied in one especially obvious way in sec. 4
and an alternative will be discussed in sec. 6.

For illustration of an assumption that is contraiaras an axiom of QM, consider von Neumann’s
famous Projection Postulate: If S is found to heakeiea, of A as a result of aA measurement, then
S’s state isP, immediately after this measurement. Von Neumarostulate is motivated by a
certaininterpretation of QM, as encoded in A1-A4, and if we want distiisthy the minimal axioms
from all interpretive material, the Postulate clganust be kept away. Indeed, if we confine oursglv
to A1-A4, we can say that QM is minimally encodedhese latter axioms and that any interpretation
of the physical theory flowing from Al1-A4 ian interpretation of QM. Had we included the
Projection Postulate we would have barred, e.g.wthole group of modal interpretations from being
interpretations. Note also that A2 is deliberatedgiue such that a theory that prohibits all but one
operator to represent a genuine physical quantigy, Bohmian Mechanics, can count as an
interpretation of QM. If we agree that A1-A4 enc@d in the sense of being necessary (but perhaps
not sufficient) axioms for the full theory we canambiguously say what anterpretation of QM can

do. It can interpret the axioms or add new onemdarg in the Projection Postulate or assumption PO
below, would be such additions. The insistencenséiiting the words ‘upon a measuremerd’'ahto

A4 would be such an interpretation, likewise thetnietion on A2 in Bohmian Mechanics. An
interpretation cannot, however, exchange one oemgioms from A1-A4 or non-trivially alter one
of them as they stand, on pain of losing its statian interpretation of QM.

Apart from one technicality it is only A4 and Athat will play an explicit role in what follows.hE
technicality concerns A2. Familiarly, the identifion of observables and Hermitian operators is
taken to imply thato-measurable observables are to be identified wadbmmuting operators. | will
use this idea (which is not strictly a consequesfc&2, but motivated by it) only in the followingill
preparatory section. Apart from this, A1-A3 wilkjuhave the function to illustrate that QM contains
one unique and unambiguous parameter t. | wills@e. 5, consider a modification of Athat
introduces a second time-index and deny it theustat a mere interpretation on the grounds that it
alters the uniqueness of the index in A1-A4, halers QM.

I now need an expression for tbempleteness of QM and start with the, again familisigenstate-
eigenvalue link (EE):

EE [A] = a () if and only if S is in statBy (t).

For future reference, | split up both direction€df into EE1 and EE2:
EE1 If Sisin stat®, (t), then A] = a ().
EE2 If[A] = & (), then S is in stat@y (t).
Arguably, EE2 can be viewed as a precise versioronfNeumann'’s Postulate. A trivial consequence

(but one that it will be good to have before ouesyseparately) is the following expression for
completeness (COMP):

! For the expression and a clear formulation see Fi73], p. 20. Apparently, the first one to aseute link,
though not explicitly, was von Neumann (see varagsan [1991], p. 247, Clifton [1995], p. 34, fn.1).



COMP If Sis not in statB, (t), then not A] = a, (t).

I will refer to the events denoted byA] = a/’ and ‘[A] = & (t)’, in A4’ and COMP a$)M events.
Whether or not the proposition denoting a QM evenist carry a time-index will be a matter of
extensive discussion. Note that our axioms andnagions so far imply a double identification of
QM events. Firstly, A4 and A4stablish the link of QM and its empirical teStke expectations and
probabilities of A4 and A4are the predictions that can be confronted withataservations. For this
to be possible, the propositions denoting QM evémt&4 and A4 must be of the same logical
structure as propositions that report such obsens&gand denote thabserved QM events. Especially,

a probability of the form ‘p @] = &)’ is tested by asserting different tokens oA]'[= &’ or its
negation and any alteration in the former will hawebe matched in the latter, and vice versa. This
identification of expressions for predicted and eslied QM events is trivial and will be neither
guestioned nor argued further throughout the papecondly, A4 and Adestablish an indirect, i.e.
probabilistic connection from QM states to QM ewertiow, EE establishes a direct link from QM
states to QM events and back and COMP establistodsaslink from QM states to QM events. | here
also assume that QM events are of the same kimdidhout, i.e. that EE and its kin talk about the
same kind of QM events that Ayields probabilities for. This identificationill be questioned, albeit
only hypothetically, in sec. 6.

In the next sections, | will sometimes have toadightiate values of parameter t in discussionstabou
measurement. Then; always is the onset of measurement of S by meérs &\-measurement
apparatustthe time when S possesses a valu&,@nd § the end of interaction.

3 Four principles and their motivation

I now introduce four principles [PO—P3]. They alincern the interpretation of probability in general
or within QM, hence will influence eventual readingf A4:

[PO] If a theory assigns an event a non-zero pntibhglthen, given the theory’s truth, this
event is possible.

[P1]  All statistical expressions in QM have thesual statistical meanings.
[P2] All events that are assigned probabilitie®M are explicitly temporal events.
[P3] QM probabilities can be defined by a standaabability calculus.

These principles need some motivation. Also, itl voé necessary to reframe them in a more
formalized manner or draw consequences from thamigered ‘PO—P3’ without pointed brackets),
for the arguments to come, and it will be illumingtto explore consequences of rejecting any one of
them. | do all this at once, for each principléum.

[PO] will later be used assuming the weakest fofnpassibility: logical possibility. Thus, it is bes
reformulated as follows:

PO If, for a proposition A (describing an event)treeory T yields another proposition
p (A) >0, then it is not the case that T, A]—

PO seems beyond reasonable doubt, but it alsowmllfrom very natural assumptions about
probability. Assume (PO (a)) that contradictionsvéngorobability zero; (PO (b)) the conditional
probability formula: p (AOB) =p (A | B) p (B); (PO (c)) that the probahilgpace for the probabilities
delivered by T can be expanded so that p (T) id-deflned; and (PO (d)) that p (T) > 0. The non-
trivial assumption is PO (c). However, it can bedmagplausible for all major conceptions of



probability. Consider probability being definedasubjective degree of belfefhen it is rational to
define p (T | A) for a theory in order to be albeeipress that T's prediction A, if it comes outety
raises your degree of belief in it: p (T | A) >.(However, if p (T | A) is well-defined, then p)(
and p (T) are well-defined on the same space. @ensalternatively, probability being defined via
conditional probabilities understood as ratios afpoertions of logically possible worlds. p (T) then
can be defined as p (T | L) where L is a logicalality and p (A | T) is defined, on the same spas

p (T), as the ratio of the proportion of logicafigssible T-worlds where A is true to the proportin
logically possible T-worlds. Consider, finally, fability being defined as the limiting relative
frequency of possible outcomes in a hypothetichhite sequence of trials of an experiment. Let a
trial of an ‘experiment concerning T’ be an exglgtatement of T with possible ‘outcomes’ True (T =
1) and Not-true (T = 0). Then ‘T = 1’ is an outcomae the event reported by A. Thus, p (T) can be
defined as p (T = 1) on a superspace of the prityabpace where p (A) lives. Given PO (a—d), the
argument for PO is very simple. Assume, by PO Gc) RO (d), that p (T) > 0. Assume also that p (A |
T) > 0. Then, by PO (b), also p (AT) > 0, whence, by PO (a), AT is not a contradiction.

My next principle [P1] says that all statisticalpeassions in QM have their usual statistical megsin
Especially, thesxpectation value in A4 is defined like thexpected value in statistics. As follows: Let
E be a set of eventAE the set of probability weights on E, V a subdethe real numbers, and f a
mapping f: E- V. Then the expected value of f in a staté] AE can be defined as: E (b) = Z,e
f(x) w(x). This definition has two elementary and impotteeatures: Firstly, every summand in E (f,
w) consists of two factors that are functions of shene eventXE. Secondly, suppose that thigE
are events all pertaining to a certain time t. Wiethen interpret each x as x (t), an event happgat

t and interpret f (x) as f (x (1)), the numericallwe associated with x (t). Hence also Euff,t) =
2aoe T (X (1) w(x (1)), for a time-dependent expected value. Ewenyimand f (x (f)yo(x (1)) in E(f, w,

t), for each x and fixed t, is the expected valtig ) weighted by the probability for it and tlsem
E(f, w, t) the expected valumpliciter. Do both features carry over into QM? Well, gijéxi], they
do. Firstly, the QM expectation values easily candbfined as special cases of the definition: For a
observableA with eigenvalues;, definew(a) = Tr (W (t) Py) andA = Z; f (&) Pa, where f is the
identity. Then 4> (t) = Tr (W () A) = 3 f (&) w(&).> What about the time-index i f (a) w(@)?
The a can be identified with our previously introduced(vents A]= a. Adapting the second
feature from the statistical expected value, thiybe QM events happening at a time t, if sucineet

is introduced. Now, such a time is introduced bseas> (t) is time-dependent in QM. Hence,
explicitly: <A> (t) =Z; f (a (1)) w(a (t)). But this yields an interesting consequensgng the identity
of events that is now established for the summamngs\> (t). «(a) now is the probability thaty]= g

at t. Hence, also W (B4 in A4’ is the probability that S hag at t. A similar result follows, if we
move to p (A] = a) = <Pxu> (t) = Tr (W (t) Pa). The latter expression, because it is a special
expectation value equals f(p; (t)) w(p; (1)), where thep, are the values d®, with p; = d«. Again,
every summand [ (t)) w(p: (t)), for eachp and t, is the expected value of eitheg]= 1 at t or P

= 0 at t, weighted by the probability for it, artkir sum is the expected valsepliciter. [P1], thus,

in our context has an interesting consequence fbpgbabilities in A4:

P1 In A4 QM probabilities, being of the form pAJ = &) = Tr (W (t) P,), are to be
interpreted as pA] = & (t)) , i.e ‘the probability that S hagof A at t'.

2 For a meaningful integration of this conceptiorpagbability into QM see, e.g., Cavetsal. [2002].

% | here follow Wilce’s exposition (see [2006], s&}.of a standard approach to generalised probabiileory
due to Foulis and Randall. Note, however, that @édéfectively defines f and on the domains (adapted to the
present notation: f# - V, with f (ja>) = g. andw: # - [0, 1] with w (Ja=>) = Tr (W (t) Py). This means to
identify theevents in this generalised approach to probability withl &ates. Given the standard interpretation
of a random variable f (followed by Wilce), whichd) as its domain, a set of outcomes of an expatahtest,
we would now have to identify QM events (the outesinand QM states, i.e. adopt EE. This must bedadoi
here in order not to beg any question concerningaiét its derivatives and it can be avoided by thgpke
changes proposed.



What about rejecting this principle P1? Well, ficdtall, it would necessitate a new definition bét
QM expectation value. One of the mentioned statikfieatures would have to be changed explicitly.
We would have to find a way to interpret the tirepdndent QM expectation value not as a sum of
factors, each of which is an event at t weightedth®y probability for this event. Consider again
<A> (1) =Z; f (a(t)) w (a(t)). Either the identity o#(t) in each summand &(t)) w (a(t)) would have

to be broken or the time-index would have to bategpreted as no longer indexing events happening
at t. Both options are unexplored in the literatainel would call for drastic revisions of the stite
concepts of QM.

But there is more to be said about giving up Pllitde reflection shows that P1 encodes an
assumption of faithful measurement — something wewkto be in a strong tension with COMP.
Consider that A4is interpreted using P1. Then a state W () yipladbabilities for QM events of type
TA] = a (t)'. Now, if W (1)) is S’s state at tthe onset time of aA-measurement, then the events, for
which A4 encodes probabilities, all refer te. tAssuming the empirical testability of QM, as
explained, the reports about observed QM evenishaile to do the same, which is to say that they
report properties S has at Notwithstanding any reflection on measurementaggiois, this is a clear
statement of faithful measurement. Given this fangny interpreters will not accept P1. Von
Neumann, in his classic 1932 treatise, rejecthfiditneasurement outright. This is clear when hes sa
that W (t) does not encode the probabilities of wwadues different copies of S have, ‘but only with
what probability they take on all possible valuddhis is a clear rejection of faithful measurement
and, hence, an implicit one of P1, too. But the sgmes for some interpreters who, in contrast with
von Neumann, qualifiedly reject COMP, i.e. all whike him, postulate a transition from possible to
actual value upon measurement of a non-eigenstateeomeasured observallés | just argued,
there is a serious problem for this line of thoudWithout P1, the notion of an expectation valuse®

its ordinary statistical meaning without acquiriagother one. This may seem a tolerable lacuna, but
we will see that there is a slippery slope fronecépg P1 to rejecting P2 and P3, which it seems fa
more outlandish to give up.

A second problem arises that is internal to QMP1f is given up, the time-index in W (t) does not
transfer into the probabilities of type ‘pAJ[= &)’ to index the QM events of typeA] = &’. Suppose
now that we wish to describe the interaction ofnfl @ measurement apparatus within QM. (The
motivation for and technical execution of this idae too well-known to repeat them here; see, e.g.,
Redhead [1987], pp. 53-54.) We let the interactiomfrom { to . Regardless of the exact nature of
the state atf we will be able to calculate probabilities for tedues of the pointer observable, $gy

at . But these probabilities no longer will be for #neent that the apparatus possesses kahfeK at

t3, but just that it possessés (at some time, within an interval?). This indefimiess of ouK
predictions is highly dissatisfying, for we cerigitest theK values (values of the pointer observable)

* See, e.g. Redhead [1987], p. 89 for the roleitiffd measurement in the derivation of the Be#iguality.
®>Von Neumann [1955], p. 206; see also ibid.211.

® Von Neumann’s idea of a transition of S, updmeasurement, from not having to having a valué d$
certainly sanctioned by collapse interpretatiorns layian orthodox Copenhagen-style interpretatiocomstrued
as in Bub [1999], pp. 187-190. For modal intergietes the situation is more complex. Although tladiyreject
EE, many of them endorse von Neumann’s transifitve. Bohm theory, if viewed as a modal interpretatigth
position as a fixed preferred always-determinateeokable (see Bub [1999], pp. 163-173), does, ofse not
assume any such transition for position. Those mad&rpretations, however, that take thesasured
observable to be the preferred one either direstiyorse the transition or leave room for assuntinghus, in
van Fraassen’s version there is an explicit ‘ti@msifrom possible to actual value’ during measweatr([1991],
p. 288). One may argue that, given van Fraassanistiaictive empiricism, we should stay entirely @sjit
about the situation before measurement and notresareal von Neumann-style transition occurring in S upon
measurement, but there is at least room here forgdso. Modal interpretations with a more realisind
expressly assume the transition as, e.g., the KnbBleks interpretation where ‘lots of observables dave
definite values [...], but when they do, those valud$ usually beacquired in an irreducibly stochastic way’
(Clifton [1995], p. 34; my italics).

" Regardless, that is, of whether the final compastate is pure or a mixture.



at definite times. So, if we want to include thepam@tus in the QM descriptior, P1 breaks the
structural identity of predictions for pointer obgble values and observation reports about such
values that | took as unquestionable at the erndeoprevious section. Se, P1 calls into question the
empirical testability of QM apparatus predictions.

Now as we will see, the positive suggestion belgmoving parameter t from ‘S hag is that t
indexes a disposition at the onset of a measuremtaction to display (i.e. have) at some later
time. Again, accounting within QM for the compouggstem of S and the apparatus imposes this
reading also for the pointer observable, i.e. etite latter's disposition at the end of measurement
to displayk; at some later time. What we would thus need tairdpe defect mentioned and evaluate
K predictions empirically is additional informatiaivout this later time.

Let's move on to [P2]. Without any motivation, Inaetize it as follows:

P2 Any expression of the formA] = &’ in QM can be given a time index, i.e. there is a
parameter t in the formalism of QM such that thpression is read asA] = & (t)’, i.e. ‘S
hasa of A att'.

If P2 is false, then measurements are not stagaptons. This can be seen as follows. To keep the
structural identity of predicted and observed QMres, the latter must, given P2, lose their index
together with the former. Obviously, a preparafiides a state vector that (due to A1 and for A3 to
make sense) has a time-index, but without P2 aarebd QM event, denoted byAT = &, will no
longer bear one. First of all, EE2 cannot be puide, because its antecedent will not be matched by
an appropriate proposition. This seems a small worifll want to position principles against COMP
and if P2 is such a principle, then it will surddg in conflict not only with COMP, but also its
converse, EE2. True enough. If there is a strucaaaflict between QM and COMP, then preparation
just cannot go along the lines of EE2. But the [mwobhere is more general. GivenP2, even a more
sophisticated prescription for state preparatiolh mat be able to build upon measured values of an
observable. What Redhead has called ‘the stateptpn aspect’ of measurement ([1987], p. 52)
will not result from our ascertaining of a QM event

This defect points toward a more fundamental probldssume plausibly that in a fundamental
physical theory, we are able to model temporal &sverplicitly, i.e. to model events that happen at
certain times with explicit reference to these 8mgertainly, if one of the QM events, for which’A4
gives probabilities, really happens, thedaés happen at a certain time, althougliP2 commands that
this time must not have turned up within 'ABy these lights, QM is not a fundamental physical
theory. This is certainly an unacceptable consecpie8houldn’'t we be able to model the temporal
QM events explicitly in QM? If yes, P2 must remairforce.

Finally, - P2 aggravates the problem, mentioned in conneutithn- P1, concerning a QM treatment
of the measurement apparatus. Above we foundghatn- P1, the obvious time-index provided by
the (now system-cum-apparatus) state W (t) will oatry over into the predictions for pointer
observabl&K’s values. So, the structural match betwkevalue predictions and observations of such
values becomes problematic. UpenP2, however, what we need — i.e. some time-indexife K
predictions to match the observations — is explidenied us. As | took the structural identitylie
non-negotiable, the result is that QM -+ P2 cannot deliver testable empirical predictions f
apparatus observable (The measurement problem — about which more beldsva quite different
problem, since it is an incoherence of QM + COMPhwd value observations, while P2 will be
seen to be an attempt to first of all make COMPeceht with QM + P0.) | emphasise that this last
problem only concerns the apparatus observdlileat we test with the naked eye. It is consistent
maintain both that those QM event&][= a’ of A4’ that refer to S do not themselves have a time-
index and that propositions of predicted and observed QMVntsvare structurally alike to guarantee
empirical testability. Namely, we might assume tipa{[A] = a) (with a reference to;tto be
determined) is a disposition, at bf S to take org; at some A [ty, t3] that must remain unknown.
Observation of valug; of K at  will permit us to conclude th& value that S has adopted during [t
t3], but not necessarily the exact time when S hadhitthis case, neither our predictions nor our



(indirect) observations of S will be time-indexddhey will be structurally alike and testability thfe
A4’ predictions will be guaranteed. (A QM treatmentlod apparatus though will be blocked, since
pointer value predictions and observations aretitrally different, as explained.) It is this, sommat
artificial, possibility to which [P3] and the whodegument of sec. 6 answer.

The final principle, [P3], says that QM probabdidican be defined by a standard probability cadculu
In order to transform this idea into a concretesprption, | have to rehearse some well-known facts
about probabilities, in QM and in general. Usualy probability space for QM system S is not
constructed from the set of events referred tohley'fA] = &, but more directly on the Hilbert space
4, from the set $() of closed subspaces af This construction clearly exposes the non-Boolean
structure of S§) and hence the non-classical structure of theespaitself and of QM, in general.
Recall how we go about this construction. Using Blé can assume that every closed subspage of
(e.g., the spacejonto whichP, projects), identifies a possible QM event on 8. ({ihat S hasy).

We can thus try to define a probability functierirom the set S$() of all closed subspaces gfinto

[0, 1]. We find that, for a given state W (t) andjigen observabld, there is exactly one functian
such that it is a probability measure (i.e. obdyes Kolmogorov probability axioms) and such tkat
(La) = Tr (W (t) Py), for all & of A. This suggests that and the function p in Adare identical and
justifies ex post our use of EE1. However, we also find that/[Sdoes not form a Boolean algebra.
Accordingly, » cannot be defined as a Kolmogorov probability fiorc(i.e. cannot obey the axioms)
on the whole set &) without qualification, but there must be defirexisome kind of generalization.
A standard definition of such a generalized prolitglfunction is given by Hughes ([1989], pp. 220-
222), following Hardegree and Frazer ([1981]). Tddinition fixes the sum of two probabilities only
for mutually orthogonal subspaces, i.e. leavesdinm of probabilities undefined for QM events
corresponding to observables that are not co-mabksur Note, however, two facts: In A4
probabilities for a combination of QM events copasding to two non-commuting observables
cannot be produced, because the choice of a upiogervable is prescribed in the conditional clause.
So, the possibly undefined combinations of QM ev@&annot arise, if the axioms of QM include A4
or an equivalent. Also, note the following matheoatfact about the functioa: S(#) - [0, 1]. For
observabléj, let SA) O S(#) be the set of subspaces each spanned by dkis efgenstates, then the
restriction ofe to SQ), 2 |sw), IS @ Kolmogorov probability function (see Huglh£889], pp. 222-223).

These last two observations highlight that the Boolean structure of &) and hence the non-
Kolmogorovian structure of cannot be turned against assuming that the fungtim A4 obeys the
Kolmogorov axioms and can be identified withs,). To the contrary: Since the established general
construction ofr entails that its restriction |s) obeys the axioms, we have an argument saying that
the probabilities in A4must obey them.

Consider, as a second familiar fact, the treatroérbnditional probabilities in QM. We can ask the
guestion what the probability is of one QM evemditional on another. Again, the standard answer
uses the set Bf and a possible justification, again, would betthey EE1, any one-dimensional
element of Sf) represents a QM event. The standard answer tbes thus: Notice initially that,
when we allow for degenerate observables, the maifoa QM event generalises such that to any
element of Sf) there corresponds one QM event. Now, Igtand Lz be any two elements of £,
with associated projection operat®sandPg, and define, for a given state W (t), the functorsé)

x S@#H) - [0, 1] by P(la | Lg ) = Tr Ps W (t) Pg Pa ) / Tr (W (t) Pg). The claim that this function
properly generalizes classical conditional probgbdan be argued by a special casePAfandPg
represent co-measurable observables (i.e. commtiner), P reduces to classical conditonalisation.
Again, the details are presented by Hughes ([19§89]223-226, this time drawing on Bub [1977]),
who concludes his account with the following remark nothing in this discussion of quantum
conditionalization bears directly on the questidénvbether the expression ‘pAJ = &)’ should itself

be regarded as a conditional probability’ (ibid628otation adapted).

Finally, recall a bifurcation in the history of appches to conditional probability. The majority
tradition introduces a probability as a functioreging the Kolmogorov axioms and then defines a



conditional probability via p (A | B) = p (AIB) / p (B) (for p (B)#Z 0). There is another tradition,
probably founded by Popper, that regards conditigmababilities as fundamental and constructs
unconditional probabilities as special cases. | @dll these approaches Popper-style approaches and
to characterize them, rely on an observation of ¥amassen’'s on the literature on two-place
(‘irreducible conditional’) probability. All impoent approaches to date, says van Fraassen, slaare tw
definitive features that can be used to define@jtimce probability measufe:

Let R = <U, F> be a pair such that U is a non-enggllyand F is a sigma-algebra on U. Then a two-
place probability measure p (...|...) on R is a funtfimm Fx F into the real numbers such that:

1. Forany AinF, the function p (...|A) is either aegplace probability measure on R or else has
constant value = 1 (‘reduction axiom’).
2. ForallA/B,CinF:p(BhC|A)=p(B|A)p (C|B A) (‘multiplication axiom’).

A one-place probability measure then can be defiketmogorov-style, by the familiar three axioms
(which is how van Fraassen does it; see ibid.hetolmogorov properties can be derived from other
axioms (which is how Popper himself does it; seppeo and Miller [1994]). Identifying intersection
among subsets of F with conjunction of events (eétslements of U) as usual, the multiplication
axiom becomes: Forall A,B,CinF:p(BC|A)=p (B|A)p (C|BIA). We then see immediately
how this axiom and the Kolmogorovian definition4|(B) = p (AOB) / p (B) (of which the above PO
(a) is a trivial transformation) hang together: lE&ca trivial theorem in the approach not contaarit

as an axiom or definition. There are thus two distadd ways to define a conditional probabilityrfro
a set of axioms: Use either the Kolmogorov axioma& get of axioms including the multiplication
axiom. The same goes for unconditional probabilitycan be either defined directly, Kolmogorov-
style, or indirectly, as a limiting case of a Papgigle axiom set. Again, a definition will presuyge
either the Kolmogorov axioms or a set of axiomduding the multiplication axiom.

Consider now the question whether QM probabilittd®ey the probability axioms. The question
depends on how we interpret them. If they are foreddally unconditional they must directly obey
the Kolomogorov axioms. If so, it is trivial thatdy indirectly obey the axioms of a Popper-style
system, including the multiplication axiom. Vicersa, if the QM probabilities are fundamentally
conditional, they must directly obey a Popper-sggstem, including the multiplication axiom and, as
a trivial consequence, will indirectly obey the Kalgorov axioms.

Now, to prepare for an argument given in sec. @sitter the question whether QM probabilities are
fundamentally conditional probabilities or not. As Hughes has pointed olis tquestion is
independent of the general task of constructingditiomal probabilies on S().° Consider,
hypothetically, that we have reason to regard Qbbabilities as fundamentallynconditional. In this
case, we cannot directly check whether they obeyRbpper axioms, notably the multiplication
axiom. We must instead check the Kolmogorov axiddypothesise, by contrast, that we have reason
to take QM probabilities as fundamentatignditional. Then we cannot directly check whether they
obey the Kolmogorov axioms, but must check the Bomxioms. This observation leads me to
specify [P3] as:

8 See van Fraassen [1995] pp. 352-354 for the itlefinand its discussion. Van Fraassen lists Pqpger
Finetti, Carnap, Reichenbach, Renyi, Harper, Figfd] himself as adherents of this tradition (ilpij.371-372).

° Note also that one can accept the plausible idegall probabilities are conditional on certaire@nditions
(Hajek [2003] makes a splendid case for the tradithdvocating this idea) and still be undecidedualois
guestion. Namely, one might think that all relev@M preconditions (our previous knowledge abounh&oeed

in its density operator plus the observable we fde@ded to measure on S) are mentioned in theitommeal
clause of A4 so that function p in its main clause can techlhyde viewed as an unconditional probability. Or
one could think that, for some reason, not all pnelitions are so mentioned, and that function ptmus
fundamentally be a conditional probability. Thittda line of thought will be explored in sec. 6.
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P3 QM probabilities either (if they are unconditdnprobabilities) directly obey the
Kolmogorov axioms or (if they are conditional prob#ies) directly obey the Popper
axioms.

Note (once more) that we need not make provisiortife generalized probability on S@). If we

want to interpret the functiom as a probability, then, because of the necessipyck one observable

Ain A4, we are restricted to the seAp@nde |sp) is Kolmogorovian. Whether this latter structure is
derived from conditional probabilities is a separgtiestion. | take it that the Kolmogorov and Poppe
axioms are standard calculi. | see no other appesaon offer, and certainly no third approach has
become standard during the last century. If theseaipproaches are accepted as the standard ones, P3
follows from [P3].

Suppose, finally, that one rejected P3. This wawdtlonly mean to invoke another definition of QM
probability (one that, | take it, does not yet &xi#t would also create a consistency problenanié
rejects P3 one denies that p in’ AglKolmogorovian (because it obeys either setxidras). But for
anys ar can be constructed such thg, is Kolmogorovian. Hence, one must deny the idgrmatt

p in A4 and the functior |sx) Which means to deny that the functienis a generalized probability
function. Again, like in the cases of P1 and P2yyileg principle P3 has dramatic consequences for
QM, indeed calls for transformation of the theayg,we know it, into something else that has yékto
developed. As | will now show, given PO, one mustydall of P1-P3 to maintain COMP.

4 The main argument: QM + PO+ COMP - = P1

In an important 1991 paper, Halpin has argued lbmafs. No interpretation of QM, assuming it to be
complete, can interpret the probabilities as unitmmaél, since ‘all interesting physical quantities
have no values until measured.’ Presupposing CAN® js indeed true for the values of observable
A when a system S is not in an eigenstat@.oflalpin argues that ‘... it would be wrong to assign
nonzero probability to something which is certaifdise.™ Here, Halpin presupposes something like
PO as a trivially true principle, and from this fidam argues that QM probabilities should standardl
be interpreted as conditional upon measurement.eNano 'assign nonzero probability to something
which is certainly false’ comes to a violation @.R/iolating PO ‘would be wrong’, i.e. is no ratan
option in the interpretation of QM. But Halpin doast point out that respecting PO produces a
conflict of QM and COMP, given that a second prteiis adopted: P1.

Initially note that, given P1, the Born Rule A¢an be rendered more exactly:

A4" If Sis in stateV (t) andA is an observable on S with eigenvalyethen the probability
that S hagy at tis: p (A] = a (1) = Tr (W (1) Pay).

Now suppose (1) that S is in a state Y £ P4 (t), for some value;tof t, such that from A4it
follows that 1 > p (] = & (t1)) > 0. Assuming that a theory contains all its ssguences, QM + P1
will contain A4’. Now, let QM + P1, COMP, and (1) be integratedione theory, QM The
argument then is simple:

1 [1] Sis in state Wt D

1, A4 (2] p ([A] = a (t2) > 0. [1], (A4)

1 [3] - (Sisin staté, (ty)). (@H)

1, COMP [4] = ([A] = & (t)). [3], (COMP)

By assumption, A4 COMP, (1), are members of QMhich thus entails both line [2], i.e. that a
certain proposition is assigned a positive prolitghiand line [4], i.e. that the negation of that
proposition is true. Hence, QMntails p (A] = a (t1)) > 0, but also: QM [A] = ac at t, |-, in

19 Halpin [1991], p. 37. Halpin does not here expllciassume QM to be complete, but presupposes “the
received view of QM, the Copenhagen interpretatioviiich obviously implies COMP.
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contradiction with PO. Thus given PO, Qt&nnot be true. (Alternatively, given PO (a—c), ‘@sinnot
have a positive probability of being true.)

The argument presupposes that 'Qfile integration of QM, P1 and assumption (1) ikeary. Is the
integration of (1) an innocuous step? Of course cam add suitable propositions to QM to create a
theory that contradicts virtually any other propiosi. But (1) is a trivially admissible state assient
that QM must be consistent with. So, the integratd (1) into QM is innocuous indeed, but the one
of P1 is not. A4, COMP, (1) are in conflict with PO, where ‘Ais a direct consequence of A4 and P1.
PO itself follows from assumptions about probapilite., PO (a—d)) that stay unaffected when we
distinguish quantum from classical probability, bers immune to rejection. Similarly (1), a trivial
admissible state assignment, is not negotiablePhund COMP are. Given PO, either COMP is false
and QM is incomplete or P1 is false.

5 First supplementary argument: QM + PO+ COMP + = P1 make P2 implausible

Consider now that we reject P1, in order to keep €ivhpatible with COMP. We will then need an
interpretation of A4that (a) uses propositions of typ&[[= a without that time-index t that is
referred to in W (t), to avoid the above contraditt and (b) assign a new place to it on the left sf

the equation in A4 There is an obvious way to do both, namely tqpokée original time-index on the
left side of the equation, but identify it with thiene of measurement, i.e. the time of the onse¢hef
measurement interaction. Halpin, as | said, hagdigresupposing, of course, COMP) that QM
probabilities throughout must be interpreted ad@@mal upon measurement — apparently because he
anticipated the above easy argument. The ideadslyspread among interpreters and Halpin claims
no originality for his proposal. His merits lie elshere and will be discussed below.

Halpin’s proposal creates a new possibility foraliimg the time-index: the onset of measuremetd. It
the only locus in view! (At this point, my argument cannot progress aislifcgas before, because it is
impossible to prove or argue conclusively for Halpi alternative possibility as thenly one
remaining. | mustassume that, apart from interpreting the probabilities @sconditional and as
conditional upon measurement, there is no furthey v do it. And | musassume that this latter
possibility creates the only alternative for longtthe time-index.) We should not, however, pregudg
whether the Born probabilities are further consiras conditional probabilities or probabilities of
conditionals, or something else. The possibilitidsbe explored below.

What happens, if we take the A4 probabilities asddmnal upon measurement and let the time-index
refer to the onset of measurement? If we strig[tAg= a’ propositions of their time-index (to meet
(a)), do we have a second one available for thelng?plain answer is no. As witnessed by Al and A3,
QM just does not provide states with two time-irdido feed into A4. Even setting aside the physical
meaningfulness of a state with two time-indicesroucing such states would constitute a tampering
with the axioms in a fundamental respect. Givendtnietures on interpretation imposed in sec.2, we
would no longer be interpreting QM as introduced Ai~A4. So, given that we want QNs
introduced to be compatible with both COMP and PO and theeefeject P1, we must assume that
propositions of type 4] = a/’ do not bear a time-index at all, which implieathnext to P1, also P2 is
rejected.

| should emphasise that neither the contradictiosec. 4, nor the problem presently discussed, are
versions of the measurement problem. To set upatter, we surely need COMP. Presently we
explore a more fundamental tension of COMP and dakimms of QM. Their conjunction is
inconsistent, given the trivial PO and the reasts®Bl. The problem is rooted in an ambiguity in,A4
which is resolved by P1 in the most natural waywNo formulate the measurement problem, we

1 Anticipating the formalization of sec.6, we canter'p ([A] = a (...) given that M)’ or ‘p ([A] = a given
that My (...))', where the blanks indicate possible argumetaces for t. One might, thinking of QM
probabilities as dispositions, propose the tagfingime of the probability itself, i.e. ‘p (...) 4] = a given that
My )’, but this does not create a third possibiliince S surely must possess the disposition abtiset of
measurement, hence agM
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must use some form of QM besides COMP. Presumatsy,use the axioms, thus have some
interpretation of them. Ideally, we should be irsgEssion of annambiguous interpretation of all the
axioms. But we have spotted an ambiguity in oneraxfthe role of the time-index in A4we have
attempted to disambiguate it in a straightforwardyw(i.e. using P1), and have contracted a
consistency problem with COMP and PO. This probieists before we can even begin to formulate
the measurement problem, where we would be usitfythe disambiguated axioms and COMP. The
same goes for P2. If we let go of P1 we must alsndon P2, and we must do this to keep QM
consistent with COMP and PO - still before we cagitb to think about a measurement problem. This
latter problem takes the axioms and COMP for gdntxpands the QM representation to the
compound system of object and apparatus, modeldeah measurement and shows that the reduced
final state of the apparatus is not such that, g@©OMP, the pointer shows a result. This is not an
internal inconsistency of QM + COMP, but a conflet them with what we observe in QM
measurement apparatus. Indeed, the whole exeffdsgmulating the measurement problem would be
quite pointless, if the axioms and COMP were inesiast from the start. The right diagnosis, thas, i
that when setting up the measurement problem witytaitsambiguate A4’ not via P1, but in another
way. The measurement problem then informs us tiR¥E still engenders problems, this time no
internal inconsistencies, but contradictions withexience.

| must elaborate on what | mean by disambiguatidgn®dt via P1. The probabilities encoded in state
W (t;) are generally understood as dispositions af (3to display a property, say. Let’s follow this
line of thought. Let's again assume that the saattils 0 < p @] = &) < 1. In this case, the
disposition picture means that the eventual displagctualization of QM eventA] = a,' happens at

a time later than t (This is straightforward from the idea that a tnioral disposition can be actualized
or not. For this to be consistently possible, tigpakition itself and its possible (non-)actualizat
must refer to different times.) This, in turn, medhat ‘A] = a, is not indexed byt the index from
state W (1). P1 thus is tacitly rejected and my argument ftbenprevious section does not get off the
ground. Also, this disposition picture allows usagsume that Azand COMP are not, by themselves,
inconsistent. Now we can start to reason aboutQhe of measurement devices and develop the
measurement problem.

However, by the previous arguments and the onentec| mean to show that the disposition picture
cannot work. Abandoning P1 is in itself problematiod leads to giving up other reasonable
principles, like P2. | emphasise that it is oneghio interpret the probabilities calculated from(iy

as dispositions, but quite another thing to interphem as dispositions possessed.dt's this latter
line of thought | object, not the former. Of couyrtiee disposition picture is motivated by the wéygh
mathematical arguments for the completeness of RN the price to be paid is much higher than we
usually think. First of all, an interpretation rejig P1 incurs a high debt in itself: The notidradQM
expectation value must be re-defined in a way rdistfrom the statistical one. A QM expectation
value can no longer be the sum of values,ati¢ighted with the probabilities for having thesdues

at ;. More seriously, there is a problem about those &®hts relating to pointer observakleGiven

an interaction within [t t], W (t3) will yield K value predictions that we would like interpret as
predictions for pointer positions af But this is denied us by P1. We are left with temporally
unspecified apparatus predictions and hence aramcbnnection with apparatus observations. Now,
- P1 implies~ P2 and still worse consequences: Measuremenésiragter of principle, not practice,
are no preparations. Measurements never ascetiiitetiged events as we know them in physics,
i.e. events thaexplicitly happen at definite times. Finally, predictions w@thi¢ values are non-time-
indexed, hence are in conflict with the time-indgxdservations of pointer values we can produce.

These difficulties certainly weigh enough to maky &nterpretation along the lines ef P2 highly
unattractive. However, it is not altogether nongmals One may think that COMP is so well-
confirmed as to motivate departing from P2, degpiéeugly consequences. We could think of thé A4
probabilities as referring to a timgwhere S has a disposition or propensity for digptaa value at
some time ithat must remain unmentioned in QM — except thatassume,ti[t,, t]. (Perhaps, the
well-known Ghirardi-Rimini-Weber model of wave-fuman collapse by means of a non-unitary
mechanism can be cast in this mould. | shall nosymithis further.) In this case, we still get asian

of A4’ with meaningful, i.e. empirically testable proHdigs for values of S: Reading th&-
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measurement apparatus pointer valug it &any single case allows to infer S’s valueAgbut not the
exact time at which S possesse'$ Erequencies of pointer values can test the prtibebidespite the
missing time reference, since the latter are noad r@s dispositions at to manifest values oA at
some unspecified later time. (Recall, however, fgen. 3 that this interpretation cannot be expanded
to a system including the apparatus, given my 8iratidentity prescription and our time-indexi€d
value observations.). Sey P2 seems to leave us with a consistent, even dftnactive, way to
integrate COMP with QM and PO.

6 Second supplementary argument: QM + PO + COMP + = P1 + = P2 make P3 implausible

For any inhomogeneous mathematical equation, amaindyntactical requirement is that a parameter
(like t) can appear only if it could explicitly aparon both sides. A4, in this sense, was explicit, but
the role of the time-index was not altogether ¢ldand | purposely left it unclear where in ’Adn
the left side of its equation, t has a place. Thwbiguity in A4 is most naturally resolved in A4
which led to the main argument against COMP. Rejgd®1, and hence A4we must find a new way
to disambiguate A4 As | have argued, there is but one ersatz posito the index: the onset of
measurement on which QM events are taken to beitemmal. Since importing a second time-index
into QM is out of the question, we must now take ttonditioned QM events to bear no time
reference, at all, i.e. must also reject P2. Blacaging the index to refer to the onset of measeird

is a new way to disambiguate Athat we must discuss. Writing Mt)’ for ‘S is measured for A at t',
the disambiguation can be framed thus:

A4 If Sis in state W (t) and is an observable on S with eigenvafyethen the probability
that S hagy is: p (A] = a, given that M, (t)) = Tr (W (t) Pay).

Among interpreters of QM, it is a commonplace tthe probabilities it generates are conditional on
suitable measurements. But’Adas all versions of A4, is a conditional itsetideone might argue that
its antecedent, by mentioning an observayleacitly refers to an appropriate procedure foaguging

A’s value and thus incorporates the condition ofiitable measurement. This could be taken to show
that despite the general condition, QM probabditieeed not be explicitly conditional: A general
conditionalising on measurement serves no perdeptigechnical purpose (in contrast with the
structure of conditional probabilities on #8(that | sketched in sec. 3). In A4however, the
conditionalising measurement has the importanttiondo absorb the time-index that we need on the
left side, but can no longer attach to the QM evtsaif. Hence, the condition must now be made
explicit within the equation of A4

This conditionalising does not imply that the exgzsien ‘p é given that M (t))’ automatically turns
into a conditional probability. Halpin, in the mamted 1991 paper, has done us the important service
of investigating the different possibilities fos ifogical analysis. He collects three options #raton
offer in the literature, finds them wanting and eclates a fourth one. (Since the list of possib#itis
open, here the argument can again not be rigorbaggpt Halpin’s list to the present case, wheee w
read the expression ‘pAJ = &)’ in (A4’) as ‘the probability that S hag given that M (t)’. As usual,

I write ‘p (...|...)’ for a conditional probability ant’ for the connective ‘if ...then.!, forming a
conditional (that can be indicative or subjunctiiédllowing Halpin, | write ‘¥ for ‘if ... then with
probability p ...", the probabilistic conditional. kén’s list (including as (d) his own proposal; dee
[1991] pp. 43, 54-55) now proposes four possiblammags for ‘p (A] = ax given that M (1))’ in
A4III:

12 There is an operationalist position (does any m@irpreter hold it?) that would take QM to beyoabout
pointer-reading predictions and would thus prohivierences from th& value in the apparatus to thevalue
in S. However, this is an uninteresting optiontia tontext of defending COMP with reference to Srdéver,
this position would be left with the problem of ndexedK predictions vs. indexeld observations.

13 Recall my discussion, in sec. 3, of parameterdls in a classical expected value and in a QM etgtion
value. If the latter are identical in meaning witle former, then t inA> (t) of A4 has a clear role, i.eAs (t) =

> f (a(t)) w(a(t)) = Tr (W (t) A). If there is no such identity, the role remaingleat
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(@) ‘P ([A] = a | Ma (1)), such that it is a conditional probability;

(b) ‘P (M4 (t) > [A] = &), such that it is the probability of a conditiona

(© ‘M4 (t) > p (JA] = a)’, such that it is a conditional with a probaliiisconsequent;
(d) ‘M (t) >’ [A] = &/, such that it is a probabilistic conditional;

Halpin offers arguments against one reading oag¢ayell as against (b) and (c) and then advocaes h
own proposal (d). | will briefly sketch his arguntgnbut offer an additional one for each case from
the present, special context: 'Ads formulated to save COMP and it is asked whe®igrcan be
maintained. Indeed, | will check for each of Halpiproposals whether it meets P3 (allows for a
definition by an established calculus), whetheseitures a clear position for the time-index onléefte
side of the equation in A4 and whether it saves COMP, the assumption abbUti@t A4" is meant

to save. None of the proposals, it will turn ouh caeet all conditions. (This does not tell against
Halpin’s very convincing case for (d), which is @jurse made outside the context of’Avith its
special restrictions on t.)

6.1 Proposal (a) contradicts P3

Consider, firstly, proposal (a), where the conditibprobabilities are defined from unconditionaksn
in the familiar way: p (a | b) := p (@b) / p (b). In the present context, event b iseasurement, e.g.
Ma (t). Halpin quotes an argument by van FraasserHader [1976] against this analysis. Since the
set of possible measurements in typical casesndermmerable, probability theory cannot guarantee
for every member M of the set that p(M (t)) differs from zero. There are cases that resrily
remain undefined, while Adgenerates probabilities for them. But there is eremfundamental
problem. Kolmogorov’s definitiompresupposes that there are unconditional probabilities of them

‘P (M4 (1)), defined by his familiar axioms, from whiete can define the conditional ones. But where
should we get them in our context? A4 and its vasiaoncern all the probabilities there are in QM
and we presently consider that all these are irge¥g as conditional probabilities. There simplg ar
no others inside QM and importing them from elsawhs, in a fundamental physical theory, not a
reasonable option. If one took each of the p, ()) to be itself conditional on some super-
measurement (to make it subject to”A4his would create an obvious regress problemthBloese
points are argued by Hajek [2003], pp.306-307.)t&® Kolmogorov definition is simply inapplicable.

A Popper-style definition of conditional probabég as primitives thus is the only way of realizing
proposal (a). However, in our context the propasal into technical difficulties. Given A4 the
requisite space of events contains two distincdsea of events, non-time-indexed and time-indexed
ones. If p is a two-place function from pairs oéeis into the real numbers, then"Alicenses values

of p if and only if its second entry, but not thiest, is time-indexed. A4 gives all the QM
probabilities there are, answers all admissiblestjoies about them. Of course, 'A€annot deliver
probabilities of the following form: p /] = a | [A] = &), p (Mg (t)] Ma (1)), but neither can it deliver
mixed probabilities like: p §] = ac | [A] = g O Ma (1)) and p (A] = a O Ma (1))] Mg (). (A4™)
simply does not know how to treat these expressibhis restriction makes it impossible to formulate
probability axioms which the QM probabilities fulfi

We have done the required preparations above. shdibéished axiomatic approaches to conditional
probability start from a two-place function p: astthre the multiplication axiom: For all a, b, ddnp
(bOc|a)=p(]|a)p(c|ba). The QM probabilities, construed as in (Ad4cannot obey this
axiom. The reason is, of course, the strict sejparatf non-time-indexed and time-indexed events as
elements of the sets for the first and second endigpectively, in p (...]...). Given that b is time-
indexed, (A4") does not define p (bic | a) and p (b | a). Given that b is not so iedexA4") does
not define p (c | bl a). Accordingly, either p (blc | a) and p (b | a) are undefined or p (dJ|d) is,
and the QM probabilities never obey the axiom.umslIf QM probabilities are interpreted as in’A4
further specified by Halpin's (a), they cannot leaditional probabilities in any established calsulu
This means that, given Halpin's (a), P3 cannot b& m

6.2 Proposal (b) contradictseither P3 or PO or = P2
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Halpin argues against proposal (b) by showing ithktads to a probabilistic version of conditional
excluded middle, something which most analyses arfdiionals avoid and which is particularly
implausible in a QM contexf. Let’s, however, supplement his argument by anathe from PO—P3.
Consider the idea that in QM the probabilities ohditionals are conditional probabilities. This is
essentially the interpretation of Born probabitieeconstructed by van Fraassen and Harper as the
central tenet of Bohr’s philosophy of physics (Hesir [1976], esp. pp. 231-236). But, in the cohtex
of A4, we can bypass discussing their proposal, asasetjuestions of probabilities of conditionals
and conditional probabilities in general, and pggieat the argument against their identificatioomf
(a). If the QM probabilities are fundamentally cdiwhal probabilitiesand obey A4”, there is no
established probability calculus supplying the sesaey axioms. So the (b) probabilities, though
probabilities of conditionals, must be unconditiopeobabilities and directly obey the Kolmogorov
axioms.

A theory of probability assignments to conditionalsere these are unanalysable primitives has not
been explored in the literature. Certainly, itsueals questionable, as treating propositions oé typ
‘A>B’ as unanalysable primitives renders the candial >’ semantically inert. But this must not
concern us here. Instead, we must consider whatheading of A4’ along these lines is consistent
with P3 and COMP. Note that Adprescribes a state W (t) and an observabier function p, hence
forces the choice of a measurement ). So, we have a set of events denoted by priomos of the
form ‘Ma (t) > S hasy’ for the eigenvalues; of A (where j = 1, 2, 3...). These events will necesgaril
be disjoint and so 3l), the set containing them, will not form a signigebra. We can, however,
easily define a function p: P(®)) - [0, 1], where P($)) is the powerset of 8], by p &) =

Tr (W (t) P, if a« 0 P(S@)) is the singleton event denoted bysM) > S hasy’, by p 0) =p @) +

... + p @), forb 0 P(S@)), not a singleton, witlhh=2a; [J ... 0 a,, and set pl{) = 0. This function
will trivially obey all the Kolmogorov axioms. Heag Halpin’s proposal (b) interpreted this way
presents a way to respect P3 (which all other malsoviolate).

But this is not what a defender of COMP can wigh Recall the identification, at the end of secof2,
types of QM events in all versions of A4 and in &l COMP. Taking now events of type,Nt) > S
hasa’ as unanalyzed primitives in A4means to decree that all QM events are of this.tyjhen the
events for which A% calculates probabilities are the very ones whiéhaad COMP link to QM
states. This will mean that the antecedent in Ef® the consequent in COMP must now mention
another type of event. Explicitly:

COMP  If Sis not in stat®y (t), then not (M (t) > [A] = &).

COMP says that if S is not in alt-eigenstate, then there is moplication from anA-measurement to
any value oA — something which, at first glance, seems quisa@aable. But on a closer look, we are
back on square one. Suppose that we have agaateaVgt(t) Py (t1), for t;, such that Py (t)> is
positive. Then, given the present reading of’Athe probability p (M (t1) > [A] = &) is positive, but
COMP also declares that it is the case that not () > [A] = a). This situation is familiar from sec.
4: A4 + COMP entails p (M (t1) > [A] = &) > 0 and, at the same time, A4 COMP, My () > [A]

= a, |-0. Hence, a version of QM that includes”A4 COMP again contradicts principle PO.

Consider, finally, the (exotic) idea of interpreti@M without identifying all types of QM events. We
might take EE and COMP to refer to a second typ@Mfevents, distinct from the ones mentioned in
A4"'. EE and COMP, staying as before, then still mentime-indexed events of typeA] = & (t)’,
while A4" is an algorithm for probabilities for events opgy‘M, (t) > [A] = &’. But this proposal
reintroduces time-dependent QM events and is theshierent with the negation of P2 we presently
hypothesise.

14| forgo sketching Halpin’s treatment of the St&maconditional ([1991] pp. 40-42, 47) which licess
conditional excluded middle, but implies a typecolunterfactual definiteness that allows to derival-B/pe
inequalities. The latter fact is shown in Halpi®86]).
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6.3 Proposal (c) renders COMP vacuousor contradicts— P2

Against proposal (c), Halpin has argued on semagtiuinds as followS The major semantic
analyses of conditionals in terms of possible wo@ddl rendemodus ponens a valid inference. So
from A, A > B one can conclude B. This means tha typical casegfter a measurement Mt), it is
true that 0 < p @] = a) < 1. Since QM probabilities are best understadhances, i.e. objective, not
epistemic, probabilities, option (c) has the paréchd result that the QM event described bA]‘E
a,” is still chancy after thé measurement is over.

Persuasive as the argument is, it can again bdesuppted with another one from our principles. If,
in A4, we read ‘p (] = a given that M (t))’ as ‘Ma (t) > p (JA] = &)’ this has the effect of cutting

‘M A (t)’ out of the equation in A4. But A4” must assign a position to the time-index on tlitesiele

of the equation, to disambiguate 'Aénd proposal (c) fails to do so, for certainlyigtonly its
consequent that can appear in the equation. Thexa easy repair: Make the consequent inherit the
index from the antecedent. Write AMt) > p ([A] = a&)’, where ‘p ([A] = &)’ is the probability at t for
the event that4] = a, (at some undefined later time). Then the left aglt sides in A4”s equation
both have an explicit dependence on t. But agairetiare implications for the nature of QM events.
Suppose (respecting the identification, from se@f )M events across versions of'Aahd COMP)
that all QM events are of a type such that’Aslculates probabilities for them. Then, EE andVFO
will associate QM states referring each to a defitime with QM events referring, by assumption, to
no definite time. These statements will be vacumoud no longer express the completeness of QM.
Take the new version of COMP and specify it;tdftS is not in stat®, (t1), then not A] = &, where

the consequent explicitly does not refer to a djpetime. Of course, if ‘A] = a.’ is true at some time
this is perfectly compatible with A] = a, (t))’. On the other hand, suppose (now denying the
identification from sec. 2) that there are two tygd QM events such that, despite the new type of
events now referred to in A4 EE and COMP stay untouched. Then, since thet laention QM
events, we have again a violation-oP2.

6.4 Proposal (d) contradicts P3 or collapsesinto proposals (b) or (c)

Finally, consider Halpin's own proposal (d) ([1994). 54-55). The new conditional™>is given a
semantics in terms of possible worlds as followst E(A) be the set of those worlds where (a
conditional statement) A is true that are most lsinto our world. Then ‘If A, then B’ (understood a
the indicative or subjunctive conditional) is triieB holds at all worlds in s(A) and ‘If A, then B
might be true' is true iff there are worlds in s(&here B is true. Les = {w 0 s(A) | B is true at w}.
Then ‘A > B’ ('If A, then with probability p B is true’) isrue iff 8 is measurable andg (8) = p.

However, this proposal is a purely semantic oneicWprobability calculus is going to underpin it?
Halpin himself sees his proposal as the appropsiateantic construal of conditional probabilitiesl an
having argued against a Kolmogorov-style calculimsklf, proposes a Popper-style calculus to
provide the syntax. But, as we saw, no such cadaglapplicable in our context because they allesha
the multiplication axiom which the A4probabilities cannot obey. P3 is violated. Onehnigpnsider
an analysis of ‘p (S hag given that M (t))’ along the lines of (b) or (c), i.e. an ansil/that respects
the expression’s conditional character, but neeteis does not interpret the QM probabilities
themselves as conditional probabilities. But Halpghtly discredits proposals (b) and (c) and we
have seen additional arguments against them icantext.

In sum: If Halpin’s list exhausts the possible geak of ‘p (A] = & given that M (t))’, then there is
no possible interpretation of A4 respecting COMP, P&y P2, that can be based on an established
probability calculus. Hence, the negation of Paismthe one of P3.

15 See Halpin ([1991], pp. 48-52). Halpin finds thistion advocated by Skyrms (see indeed his [19821p.
The same proposal is made by Hughes as a compohkist quantum event interpretation (see [1989B(8).
Of course, neither Skyrms nor Hughes presupposestbing like- P2, so Halpin's arguments, but not mine,
are applicable.
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7 Conclusion

My argument for the principled incompleteness of @it been complex. The main argument was
simple and relied on the easiest way to disambégidt, i.e. principle P1. The obvious loophole is
not to accept P1, although, as | have argued, libis when the familiar connection of A4
probabilities with A4 expectation values is comhingith the classical statistical definition of an
expected value. Upon rejecting principle P1, istimightforward that one has to reject also P2. But
giving up these two leads to a conflict with P3vésion of QM denying us the exact time reference
of QM events will have no formal connection witletbstablished calculi of probability. | have shown
that giving up any one of P1-P3 has unacceptaliisetmences for QM. Since PO is sacrosanct, it is
COMP that should be abandoned.

Many interpreters of QM do not accept COMP, anyw@agn they look at this set of arguments with
calm? It depends. Problems arise for those modalrpretations that endorse von Neumann’'s
transition from possible to actual value upon meament (see above footnote 5). It should be clear
that my arguments ultimately put them in a less footable position than their dismissal of COMP
suggests. Advocating the transition is to negatehBdce the main argument of sec. 4 is inapplicable
But all the problems of negating P1, and as a cpresgce also P2 and P3, remain — a fact that clearly
speaks against this group of interpretations. Bahmilechanics can be construed as a modal
interpretation, but does not include anything litkee von Neumann transition. Hence, it is an
exception. Since there is only one observable {jpo3ithat is faithfully measured, both P1 is adeep
and COMP negated. All problems resolved! | do n@niwto advocate Bohmian Mechanics, in
particular, as the interpretation of choice becausas well-known vices: the quantum potential as
such and the problems with relativistic contextsut B am impressed to see Bohmians
straightforwardly present, for the continuous otzable position, a disambiguated version of fat
amounts to a version of Adhence respects PAwhile other interpretations are less outspokeruabo
this crucial point.

What are the morals? | want to draw a positive kwmien for the interpretation of QM. Apart from
Bohmian Mechanics, there is another option thatd particularly interesting. | have shown that QM
+ PO + P1- - COMP and have tried to make it plausible that Bdsdhot have a viable alternative.
- COMP means that if S is not in a certain statl,dahere is no implication, at all, that it does not
have a certain value & at t. In particular, if S is in some state W& Py (t1), we may still assume
that it hasy; at t, for some i. Without further argument, | take ttasbe equivalent to saying that for
any observablé on S and for any state W))(tS has some value @&f at . This condition is called
value definiteness (VD), in the literature. If tguivalence is granted, | have shown that QM + PO +
P1 - VD (where= PO is unintelligible aneh P1 is implausible). Now, as | said in the introiioe,
QM can be assumed incomplete only with strangeemurences. Briefly, the situation is this. Kochen-
Specker-type arguments (which have been simplf@tsiderably in recent yealsyhow that definite
values of the QM observables (VD) and non-contdyueNC) of these values entail a contradiction
with QM. Schematically: QM- = (VD + NC). Note that it does not make sense t@ gip VD and
retain NC. So we are left with either(VD + NC) or VD += NC. My argument can be viewed as a
vote for the latter option, i.e. for a contextualden-variables interpretation of QM.

% In a recent paper, Duesat al. [2005] ask us to consider ‘a universe of N norirgktic particles whose
positions we denote b, (t), ..., Qn (t)'. These are particle trajectories indicatinffestent possible positions of

S at t, for any t. The authors introduce the Scimgiel equation and Bohm's equation of motion, theite:
‘The configurationQ (t) = Q: (t), ..., Qu (t)) is random andy (t) | >distributed at every time t, prob (Q ()
da) = |@ (a, ) [*dg.

" For a simple and unified form of the Bell and KenkSpecker theorems for two and three particles, se
Mermin [1990]. For the simplest Kochen-Specker tgpgument for one particle, see Cabello et al. §1.90r a
proof that it is the simplest one see Ravet al. [2005].
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| have no clear idea about such an interpretabahpne more thing can be said about it. Contextual
hidden variables have been discussed here and itndhe literature and two groups have been
characterized. Shimony has dubbed one versionremviental contextualism’ and characterised it is
as follows: The hidden values are relational propemwhose existence depends on ‘the state of the
physical environment with which the system S inte&ga(Shimony [1984], p. 29). On Shimony’s
reading, environmental contextualism denies thahdtkes sense to attribute @nvalue to S in
isolation. It is only when S and af+measurement apparatus meet that such a value doioes
existence. So, VD (value-definiteness as just thtoed, i.e. concerning values of S in isolation)
cannot be part of this brand of a contextual hidekeables interpretation. The only classical featu
(at least on Shimony’s analysis) this contextualis@nts to defend against QM orthodoxy is
determinism: S’sA value supervenes deterministically on the S-cupaggius state (see Shimony
[1984], pp. 34-35). There is a second brand, wiikimony finds spelled out in work by Gudder and
calls ‘algebraic contextualism’ (see Gudder [197&hjmony [1984], p. 29). Here observables have
values relative to a context which is a maximal Ban subset of the sets§(of closed subspaces of
#. Though a non-maximal observable can be a membedifterent subsets, this brand of
contextualism denies that it has the same valueoth cases. Now, consider that the choice of a
maximal observable singles out a maximal Booledsesu Then Gudder’s construction can be seen to
be (at least technically) equivalent to a propesade by van Fraassen ([1973]) and discussed by
Redhead ([1987], pp. 134-135; see also Stairs [[J28@ler the name of ‘ontological contextualism’.
A non-maximal operator that is a function of difiat maximal operators does not represent the same
observable in contexts defined by the different imak ones; a fortiori these observables need not
have the same value in these contexts. This idebedleshed out as follows. A measurement context
ideally singles out one maximal observable and aperon # and so fixes the non-maximal
observables several of which can be representethdysame operator oa. Again, we have a
relativity to measurement contexts, but it concamos the S properties, but the observables on S,
singled out for observation by confronting S witltextain measurement device. There is no reason
here to question that an observable’s value has eterminate all along, hence VD can be respected.

Of course, | am not even sketching an interpratatioit only vaguely pointing toward one. However,
my argument against COMP was also a vindicatio@fin the context of QM. And so it singles out

not only a hidden-variables contextualism as th@omalternative to Bohmian Mechanics, but also
speaks against one version of such a contextuaisfor another. If the two mentioned brands of
contextualism exhaust what is on offer, then myuargnt selects one of them: ‘ontological

contextuality’, whatever this may ultimately comat ¢o be. Since QM is so well-confirmed and is so
very likely incomplete, a serious competitor for Hidan Mechanics is a hidden-variables
contextualism. The latter’'s key feature of ontotadicontextuality is, | submit, the candidate for a
deep ontological feature in Nature and deserveglogest theoretical attention.
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