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One arrives at very implausible theoretical conceptions, if one attempts to maintain the 

thesis that the statistical quantum theory is in principle capable of producing a complete 

description of an individual physical system. On the other hand, those difficulties of 

theoretical interpretation disappear, if one views the quantum mechanical description as 

the description of ensembles of systems. Albert Einstein (1949).  

 

 

 

Quantum mechanics has given rise to a lot of discussion since its conception, as some 

things are so weird. I will try to clarify some of the issues here. One thing is very 

important from the outset. Quantum mechanics is a statistical theory. It tells us the 

various possible outcomes of experiments and the corresponding probabilities if we 

would do a large number of identical experiments on individual quantum systems. 

Identical experiments are necessarily idealizations, but this is not much of a restriction in 

practice, as many variables (e.g. what's is going on in Sidney or on the next bench in the 

lab) are irrelevant. In this context taking a spectrum of a sample in the gas phase appears 

to be a single experiment but it really amounts to doing measurements on many 

individual quantum systems. The systems are not all identical but this is the same type of 

fluctuation that occurs in classical statistical descriptions. At first sight the situation may 

not appear very different therefore from the description provided by classical statistical 

mechanics. In that case however, we have an underlying description (classical 

mechanics) that provides a complete (i.e. non-statistical) description of the world, which 

in general is far too complex, however, to be of use. Throwing a dice is a good example. 

Here we find the probabilities to obtain either of the outcomes 1, 2, 3, 4, 5, 6 equally 

likely (1/6). However, in principle it is possible to throw the dice always in precisely the 
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same way such that it would yield a 6 say every time. It is unlikely that you would master 

this skill yourself but it appears well possible to built a device that would accomplish this. 

Classical mechanics says that in principle it can be done. The dice in the quantum world 

is different. It is intrinsically impossible to predict the outcome of a single event (unless 

the probability is unity). In fact this type of 'single event' experiment is not even the 

subject of quantum theory. We can only predict statistics and this requires that one does 

many identical experiments. Let me emphasize this aspect as it is easily to get confused 

on this issue. For example in every day language we might hear that there is a 70% 

chance that it will rain tomorrow. What does this mean? How can we verify that this 70% 

is a valid prediction? These kind of predictions only have a meaning when evaluated over 

many tomorrows.  

 

Every description of an experiment on a microscopic system (even single molecule 

spectroscopy) is essentially statistical. Typically one performs an experiment on a sample 

consisting of similar microscopic systems. In an idealized theoretical description we view  

such an experiment as equivalent to performing a sequence of measurements on each 

(now supposedly identical) microscopic system in isolation. This generates a definite 

result for each individual experiment, and the statistics of the distribution of results is 

described by quantum mechanics. This theoretically predicted distribution of results may 

not quite agree with the experimental result for a variety of reasons. The actual 

experimental sample will contain a distribution of different microsystems; it will involve 

some interaction between different microsystems or between microsystems and the 

environment, and so forth. Some of these effects can be taken into account by using 

statistical mechanics. This is beyond where I want to go, however. Let us simply assume 

that the quantum description would agree very well with the experimental result, and 

analyse what it says and what it means.  

 

The above abstraction of an experiment shows that quantum mechanics describes the 

statistical outcome of an experiment performed on an ensemble of identical 

microsystems. The wave function in quantum mechanics describes the properties of the 

ensemble. This is very different from classical theory, where the laws of physics describe 
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individual systems, and we can imagine how they relate to 'reality'. We cannot claim that 

this is true in quantum mechanics. The wave function relates to an ensemble of identical 

systems. In most textbooks on quantum mechanics the wave function is said to describe 

the 'system'. This is slightly inaccurate and it is analogous to the fact that the weather 

forecast does not describe tomorrow but an 'average of possible tomorrows' given the 

current situation in the atmosphere. The reason that I emphasize this seemingly minor 

point is that it helps to explain many of the 'strange' results of quantum mechanics. As 

long as we strictly adhere to the so-called ensemble interpretation of quantum mechanics 

we seldom run into difficulties. It is unsatisfactory perhaps that this is all we (can?) know 

about the microscopic world, but this is the (current) state of affairs. 

 

Below I will discuss the postulates of quantum mechanics. We will phrase these 

postulates using just the x-coordinate of a single particle. The generalization to many-

particles in 3d space is straightforward, but leads to less transparent equations unless 

some new notation would be introduced. Also we will discuss everything in the so-called 

coordinate representation. A more general formulation is not needed for our present 

purposes. 

 

1. Measurements in Quantum Mechanics. 
 

In MS (McQuarrie and Simon) mathchapter 2 you find a discussion on the statistical 

analysis of a repeated measurement of the quantity A on a given ensemble. Let us assume 

that if we measure the quantity A, we have possible outcomes a a1 2, ,...,. The 

probabilityP a Pi i( ) =  to find the value ai  for our given ensemble is N Ni tot/ , where Ni  is 

the number of times we obtain ai  out of a total number of measurements Ntot . In the limit 

of a very large set of measurements these probabilities will converge to definite numbers 

0 1≤ ≤P ai( ) . This leads to the purely classical definitions of the average value A  or A  

  A Pa P a P ak k
k

= + + = ∑1 1 2 2 ...  (4.1) 

and the standard deviation σ ( )A , or similarly its square, the so-called variance: 
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 σ ( ) ( ) ( ) ... ( )A P a A P a A P a Ak k
k
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2 2 0= − + − + = − ≥∑  (4.2) 

The variance can be written alternatively as  
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( ) ( ( ) )− = − +
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= − ≥

∑ ∑

∑ ∑ ∑
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2 2

2 2

2

2

0

 (4.3)  

and this is the form that turns out to be very convenient in QM. It is seen that the variance 

is 0 only if we only have a single possible outcome of the experiment with unit 

probability. This will be an intuitively obvious observation. 

 

In Quantum Mechanics we have a set of strict rules for discussing measurements. The 

prime role is played by the quantity being measured, the so-called observable, which is 

analogous to the ‘measuring apparatus’. In Quantum Mechanics observables are 

described by so-called Hermitian operators, which describe the possible outcomes of 

experiments. The second ingredient in a measurement is the sample, or ‘ensemble’. It is a 

collection of ‘identical’ microsystems, and this ensemble is described by the so-called 

(normalized) wave function. The wave function determines the probabilities for the 

outcome of the experiment. There are generalizations of the wave function, involving the 

so-called density matrix, that I will only briefly allude to in these notes. Let us proceed 

with a brief description of the quantum machinery. 

 

An observable classical quantity A  corresponds to a linear Hermitian operator A  in 

quantum mechanics (Operators carry hats to distinguish them from numbers. They act on 

functions.). Classical quantities are functions of the basic variables, the positions and 

momenta of the particles (energy, angular momentum are some examples). In the 

classical theory the basic variables depend on time, and the laws of physics describe how 

they involve in time, given initial conditions, and given the forces between the particles. 

In Quantum Mechanics position and momentum become abstract operators, that 

themselves do not depend on time. There is a translation table to go from the classical 

quantities to the quantum operators. Some examples: 
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 Classical                  Quantum 

 ( ), ( ), ( )x t y t z t  ˆ ˆ ˆ, ,X Y Z  

 ( ), ( ), ( )x y zp t p t p t  ˆ ˆ, ,...x yP i P i
x y
∂ ∂

= − = −
∂ ∂

 

 
2

( , , )
2
pE T V V x y z
m

= + = +                         
2 2 2 2

2 2 2
ˆ ( ) ( , , )

2
H V x y z

m x y z
∂ ∂ ∂

= − + + +
∂ ∂ ∂

 

 x z yL yp zp= −  ˆ ˆ ˆ ˆ ˆ ( )x z yL YP ZP i y z
z y
∂ ∂

= − → − −
∂ ∂

 

 y x zL zp xp= −  ˆ ˆ ˆ ˆ ˆ ( )y x zL ZP XP i z x
x z
∂ ∂

= − → − −
∂ ∂

 

 z y xL xp yp= −  ˆ ˆ ˆ ˆ ˆ ( )z y xL XP YP i x y
y x
∂ ∂

= − → − −
∂ ∂

 

  ˆ ˆ ˆ, ,x y zS S S  

 

This allows us to make the corresponding operators in QM: Replace x y z, ,  by the 

multiplication operators , ,X Y Z , and replace the momenta by differential operators: 

p P i
xx x→ = −
∂
∂

 and so forth. This allows you to construct most operators that occur in 

QM. In addition there are three operators with no classical analog. They are the spin 

operators ,S Sx y  and Sz . These will be discussed later on. 

 

An operator A is linear if for any linear combination of functions (in its domain) 

 ( ( ) ( )) ( ( )) ( ( ))A c f x c g x c A f x c A g x1 2 1 2+ = +  (4.4) 

while it is called Hermitian if for any two functions (in its domain)  

 g x A f x dx f x Ag x dx Ag x f x dx* * *( ) ( ( )) ( )( ( )) ( ( )) ( )= =
−∞

∞

−∞

∞

−∞

∞z z z (4.5) 

Hence instead of acting on f x( ) we can act on g x( ) and take the complex conjugate of 

the result. The value for the integral in either form is the same irrepective of  the actual 

functions f and g . Therefore, Hermiticity is a property of the operator. The Hermiticity of 

an operator is connected to the precise definition of the integration. Typically operators 
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are Hermitean only if they act on functions that satisfy the boundary conditions in the 

problem (This is again tied to the integration. Think of the particle in the box, or a 

particle on the ring). Such functions that satisfy the boundary conditions are in the so-

called domain of the operator. Hermitian operators have some very important properties 

that make them suitable for the representation of observables which play a crucial role in 

QM. In particular they have real eigenvalues ak , and their eigenfunctions can always be 

chosen to be orthonormal: 

 

Hermitian operator A:   orthonormal eigenfunctions φ k x( ) , real eigenvalues ak :   

 

  ( ) ( )A x a xk k kφ φ=  (4.6) 

 

 φ φ δk l klx x dx* ( ) ( )
−∞

∞z =  (4.7) 

where δ δkl klk l k l= = = ≠1 0, ; , ; is the the Kronecker delta symbol. 

Moreover any function Ψ( )x  (that satisfies the boundary conditions) can be expressed as 

a linear combination of the eigenfunctions of a Hermitian operator A (this is the the so-

called completeness property) 

 Ψ( ) ( ) ( ) ....x c x c x= + +1 1 2 2φ φ  (4.8) 

where the expansion coefficients are given by 

 c x x dxk k=
−∞

∞z φ* ( ) ( )Ψ  (4.9) 

 

These mathematical definitions lead to a very precise description of measurements on an 

ensemble of microscopic systems.  The statements below are a concise form of the 

postulates of QM related to measurements. The ensemble in QM is described by a 

normalized wave function Ψ( )x  : Ψ Ψ( ) ( )*x x dx
−∞

∞z =1, and the results of measurement of 

a quantity A for the entire ensemble can be described as follows:  

- Only eigenvalues ak  can be obtained, one of them for 'each measurement on an 

individual system in the ensemble'. Collecting the data on the individual 

measurements yields the statistical information. 
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- Each possible value ak  shows up with probability P c c ck k k k= =2 * , where the (in 

general complex) coefficient ck  is defined in Eqn. (4.9). This probability depends on 

the sample, described by the normalized wave function Ψ( )x , and it depends on the 

observable being measured (through its eigenfunctions φ k x( ) ). 

- After measuring A the initial ensemble is split up in subensembles, one corresponding 

to each of the possible eigenvalues ak .  The wave function that describes the 

subensemble corresponding to ak  is the corresponding (normalized) eigenstate φ k x( ) .   

- If we would continue to pursue with some further measurements on the complete 

ensemble, we would work with each of the subensembles described by φ k x( ) , and 

collect the results by summing over each subensemble and multiplying this subresult 

with the respective probability kP . 

 

In the above description we have assumed that each of the eigenvalues of the operator A 

is non-degenerate. If there is more than one independent eigenfunction, say φ φk kx x
1 2
( ), ( ) 

corresponding to the same eigenvalue ak  the rules are slightly more complicated. We will 

outline this, after we have introduced some more notation. 

 

   =============  Average values, expectation values and variances in QM.  

 

The above is a fairly precise description of the information content of QM. In particular 

we can obtain information on the averages and variances discussed above: 

 A A A x A x dx= = ≡
−∞

∞z ( ) ( )*Ψ Ψ  (4.10) 

This average quantity is also called the expectation value. For the variance we have  

 
σ 2 2 2 2 2 2

2

( ) ( )

( ) ( )*

A A A A A A A

x A A x dx

= − = − = −

= −
−∞

∞z Ψ Ψe j
 (4.11) 

These relations are not extra postulates. They follow from the previous statements and 

their classical definitions as can be verified by expanding Ψ( )x  in terms of 

eigenfunctions of A. e.g.  
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*

* *

* *

* *

* *

,

ˆ ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

( ) ( )

k k l l
k l

k l k l
k l

k l l k l
k l

k l l kl k k k k k
k l k k

A x A x dx

c x A c x dx

c c x A x dx

c c a x x dx

c c a c c a P a A

φ φ

φ φ

φ φ

δ

∞

−∞

∞

−∞

∞

−∞

∞

−∞

= Ψ Ψ

=

=

=

= = = =

∫
∑ ∑∫

∑ ∑ ∫

∑ ∑ ∫
∑ ∑ ∑

 (4.12) 

There are important general aspects of this proof that you are expected to know. In the 

first step we substitute the expansion for Ψ( )x . Please note that we use a different name 

for the summation indices to represent Ψ( )x  and its complex conjugate. This is 

completely general technique: never use the same summation index twice. They are 

always independent. To emphasize this: an index may appear multiple times, but not 

under the summation sign. In the second step we use linearity, both of the operator A and 

of performing integration. In going from the third to the fourth line we use that the 

expansion functions are eigenfunctions of A, and finally we use that the eigenfunctions 

are orthonormal. The integral in the fourth line is non-zero (unity in fact) only if l k= , 

which gets rid of the sum over l . 

 

Similarly the QM variance can be shown to reduce to σ 2 2( ) ( )A P a Ak
k

k= −∑  , which is 

the classical expression. The variance vanishes if and only if only one term in the sum 

contributes, in which case the average equals this particular eigenvalue al  say. It follows 

therefore that the variance vanishes only if the wave function Ψ( )x  that describes the 

ensemble is an eigenfunction of A. One of the postulates was that the subensemble 

obtained by measuring an eigenvalue ai  was described by the eigenfunction φ i x( ). Here 

it is seen that if we measure A again on this particular subensemble we find the 

eigenvalue ai  with absolute certainty. This is what we would expect classically. 

Measuring a quantity is therefore a good way to prepare an ensemble of identical 

microsystems(!), as the subensemble corresponding to a particular eigenvalue is 

collectively described by the same wave function after the measurement. 
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For those of you who are familiar with linear algebra it may be illustrative to point out 

the analogy of the orthonormal eigenfunctions of an operator A with an orthonormal 

basis for a vector space. The functions φ φ1 2( ), ( ),...x x   can be thought to form 

orthonormal basis vectors (coordinate system, or axes). Ψ( )x  represents an arbitrary 

vector in the space, with coordinates ( , ,....)c c1 2  with respect to this basis. The inner 

product between two vectors   (needed to define the vector space) is defined as : 

 
Ψ
Ψ

a

b

x a x a x
x b x b x

( ) ( ) ( ) ...
( ) ( ) ( ) ...

= + +
= + +

1 1 2 2

1 1 2 2

φ φ
φ φ

 (4.13) 

 " " ( ) ( ) ...* * *Ψ Ψ Ψ Ψa b a bx x dx a b a b⋅ = = + +
−∞

∞z 1 1 2 2  

The act of measurement is then described as decomposing the full ensemble 

corresponding to eigenfunction Ψ( ) ( )x c xk
k

k=∑ φ   into subensembles corresponding to 

eigenvalues ai  that are each described by a particular basis vector φ i x( ). The probability 

to find eigenvalue ai  equals ci
2 . It is not correct to think of the ensemble to consist of 

subensembles in the first place (this many particles in state φ1( )x , that many in state 

φ 2( )x , etc. ). This would give the wrong result whenever so-called interference effects 

play a role. Using this vector analogy different measurements A B,  correspond to 

different sets of coordinate axes (different eigenfunctions in general), and a different 

decomposition of the wave function Ψ( )x  that describes the ensemble. The vector analog 

is an intuitive (and rigorously valid) picture that may help you to understand this 

somewhat abstract chapter. 

 

====== Dirac notation. 

 

The analogy between complete sets of orthonormal functions and that of orthonormal 

vector space can be made very naturally by using a clever notation invented by Dirac, 

called Dirac bra-ket notation. I will list a little dictionary of the translation, as this 

clarifies the ideas and the power of Dirac notation. It will be used extensively throughout 

the course. 
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 Functions Dirac notation     Comments 

 

 ( )xΨ  Ψ  Arbitrary state, “ket” 

 ( )i xφ  ,or ii a  Orthonormal basis function 

 * ( ) ( )a bx x dxΨ Ψ∫  *
a b b aΨ Ψ = Ψ Ψ  Inner product of two vectors: bracket 

 *( ) ( )i j ijx x dxφ φ δ=∫  iji j δ=  Orthonormality of the basis. 

 *( )....i x dxφ∫  i  “Bra”:  (anti-)linear Functional: 

   associates a number when acting on arbitrary vector… 

 
*

( ) ( )

( ) ( ) ( )

i i
i

i i
i

x x c

x x x dx

φ

φ φ

Ψ =

= Ψ

∑

∑ ∫ ˆ
i

i

i i

i i

Ψ = Ψ

=

∑

∑1
 Completeness relation 

 

The Dirac notation has the enormous advantage that it is more compact than the explicit notation 

using functions. This is true in particular if the coordinate space extends over many particles and 

3 dimensions! All of the variables are implicit. This was of great importance when Dirac 

introduced this notation, and he could relate different versions of quantum mechanics using his 

so-call transformation theory. A very nice feature of the notation is that the resolution of the 

identity, ˆ
i

i i=∑1  , takes on a convenient form. Many useful manipulations will just be 

performed by inserting this resolution of the identity. Always bear in mind that summation 

indices are independent and should get different names. Some examples of using Dirac notation: 

 
2* *( ) 1i i i

i i i i
i i i i c c cΨ Ψ = Ψ Ψ = Ψ Ψ = = =∑ ∑ ∑ ∑  

 

, ,

ˆ ˆ ˆ
ji i

i i j i j

O O i i j j O i i j O cΨ = Ψ = Ψ =∑ ∑ ∑  
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Here *ˆ ˆ( ) ( )j ij O i x O x dxφ φ= ∫  are the matrix elements of the operator Ô  in the basis i  . We 

just inserted the resolution of the identity twice. The final result expresses the result Ô Ψ  in the 

basis set j . 

 

An operator is Hermitian if *ˆ ˆ ,j O i i O j i j= ∀  

 

 

=======  Commutators and the uncertainty principle. 

 

Above we discussed the variance σ A
2  of measuring the quantity A corresponding to an 

operator A. The variance depends on the ensemble (of course), hence on the wave 

function Ψ( )x , and we found that σ A = 0 if and only if the wave function Ψ( )x  that 

describes the ensemble is actually an eigenfunction of A. The easiest way to prepare an 

ensemble in such a state is by performing the measurement (as discussed). Now we can 

measure a quantity B  after measuring A and ask the question: "Can we prepare an 

ensemble such that both σ A  and σ B  are zero?" This would mean that both the quantity A 

and Bare uniquely specified for each element of the ensemble. Following the postulates 

this would be the case if the wave function Ψ( )x  is an eigenfunction of both the 

operators A and B . A more elaborate question would be "Can we create an ensemble that 

has sharp values for A and B  for all possible outcomes of measuring  A then B?". This 

would imply that there is a function for each possible pair of eigenvalues ( , )a bi j  that is 

an eigenfunction of both A and B .  The operators A and B  in such a case should have a 

complete set of common eigenfunctions  

 φ φa b a bx x
1 1 2 2, ,( ), ( ) ,....: 

where 

 
( ) ( )

( ) ( )

A x a x

B x b x

a b i a b

a b j a b

i j i j

i j i j

φ φ

φ φ

=

=
 (4.14) 

From this it follows that  
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 ( ) ( ) ( )AB x BA x a b xa b a b i j a bi j i j i j
φ φ φ= =  

and since any Ψ( )x  can be expanded in this set of eigenfunctions (the completeness 

property) it follows that  

 ( ) ( )AB x BA xΨ Ψ=  for any Ψ( )x  (4.15) 

 

or  ˆ ˆ ˆˆ ˆ ˆ, 0A B AB BA  = − =   (4.16) 

Here we have shown that if it is in principle possible to create an ensemble that has sharp 

values for A and B  for any permissable pair of values of these observables only if A and 

B  commute. The eigenvalues come in specific pairs, as they have to correspond to 

specific common eigenfunctions. How can we prepare such an ensemble? Simple. 

Measure a quantity A, take the subensemble that corresponds to eigenvalue ai  and go on 

to measure the quantity B . If we now pick the subensemble corresponding to bj  it would 

be described by a common eigenfunction of A and B , φ a bi j
x, ( ). We can reverse the order 

of the measurements to create the specific ensemble, and we can do it for any pair of 

commensurate eigenvalues ai  and bj . This also works if A and B  have degenerate 

eigenvalues, although I will not venture a derivation of this result here. Finally the 

converse is also true: if ,A B = 0 then A and B  can be measured to indefinite precision. 

This can be more accurately phrased as: It is possible to prepare specific ensembles that 

will yield definite results for the (sequential) measurement of A and B .   

 

From the postulates it also transpires what happens if we subsequently measure 

observables A and B  whose corresponding operators A and B  do not have common 

eigenfunctions. If we measure A and continue with the subensemble corresponding to 

eigenvalue ai , which is described by the eigenfunction φ i x( ) we can continue to measure 

B . However by assumption φ i x( ) is not an eigenfunction of B  and we will therefore not 

get a sharp value for B. There is necessarily a spread. After measuring B  and continuing 

with the subensemble corresponding to bi  described by eigenfunction ψ j x( ) 

(eigenfunction of B  but not of A) we could decide to measure A again. However, the 
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new wave function ψ j x( ) is not an eigenfunction of A and we would get a distribution of 

values for the observable A. This means that measuring B  has destroyed the sharp value 

for A we created by the very act of measuring A. If the operators A and B  do not 

commute in general the measurement of B  destroys the information we obtained by 

measuring A. This is the content of the uncertainty principle. I might add that it is 

possible that A and B  do not commute, but still have some eigenfunctions in common. In 

such a case the corresponding eigenvalues can be specified sharply and are not disturbed 

by subsequent measurements of A or B . Let me also note that the notion of simultaneous 

measurement does not enter the discussion. Using our ensemble interpretation the quest is 

for an ensemble that would yield a sharp value for the observables upon measurement. Be 

it in sequence or simultaneous or in combination. None of this matters if A and B  

commute. (This is strictly true only if A and B  also commute with the Hamiltonian, see 

below). 

 

For your information I will quote the general result about the product of standard 

deviations for operators that do not commute. The minimum spread depends on the initial 

wave function that describes the ensemble and the general result reads 

 ∆ ∆A B A B≥
1
2

,         (for given state Ψ( )x ) (4.17) 

For the quantum aficionados in the class the proof follows by defining  

 φ λλ ( ) {( ) ( )} ( )x A A B B x= − + − Ψ ;    (4.18) 

Then using that φ φ λλ λ
* ( ) ( )x x dx ≥ ∀

−∞

∞z 0 (this depends on the Hermiticity of A and B ) 

you can derive the general result (4.17). Give it a try! 

 

Finally we have the special case:   ,A B c=  (a constant),   which implies ∆ ∆A B c≥
1
2

 :  

This leads to a lower bound on the precision of measuring A and B  that is independent of 

the initial ensemble (wave function). The most famous example is of course: 

∆ ∆x p ix ≥ =
1
2 2

, Heisenbergs uncertainty principle. 
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====   Some tricks when evaluating Commutators:  

 

( ) ( ,...) ?? ( ,...),AB BA x C x− = =Ψ Ψ for any Ψ( )x      → =,A B C  

You need to act on an arbitrary function to get the desired result.  

Examples:  , ; , ; , ; ,p p x y x p x p ix y y x= = = =0 0 0  

 

 

, , ,A B C A B A C+ = + ;    , , ,A BC A B C B A C= +  

 

e.g. , , ,x p x p p p x p i px x x x x x
2 2= + =  

 

 

2. The Time-Dependent Schrödinger equation. 
 

Another important postulate in quantum mechanics concerns the time-dependence of the 

wave function. This is governed by the time-dependent Schrödinger equation 

 ( , ) ˆ ( , )x ti H x t
t

∂Ψ
= Ψ

∂
 (4.19) 

where H  is the Hamiltonian operator of the system (the operator corresponding to the 

classical expression for the energy). This is a first order differential equation in t , which 

means that if we specify the wave function at an initial time t0 , the wave function is 

determined at all later times. Let me emphasize that this means the wave function has to 

be specified for all x  at initial time t0 . These initial conditions are familiar from wave 

equations as discussed in MS Chapter 2. In classical physics we often deal with second 

order differential equations and in addition the time derivative ∂Ψ ∂( , ) /x t t  would then 

need to be specified for all x. Let me emphasize here that although the experimental 

results that can be predicted from QM are statistical in nature, the Schrödinger equation 

that determines the wave function as a function of time is completely deterministic. 
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=======   Special solutions: Stationary States  (only if H  is time-independent). 

 

If we assume that the wave function can be written as a product:   Ψ( , ) ( ) ( )x t x t= φ γ  we 

can seperate the time dependence from the spatial dependence of the wave function in the 

usual way. The separation constant is called E  and will turn out to be the energy of the 

system for such solutions 

 → = → = − −... ( ) ( ) ( ) ( )/i d t
dt

E t t e iE t tγ γ γ 0  (4.20) 

 ( ) ( ) ( ) ( )H x E x H x E xn n nφ φ φ φ= → =       (4.21) 

equation (4.21) is called the time-independent Schrödinger equation and plays a central 

role in all of chemistry. Since the operator H  is Hermitian the eigenfunctions form a 

complete and (can be chosen to be an ) orthonormal set of functions. Using these 

eigenfunctions of H  special solutions to the time-dependent Schrödinger equation can be 

expressed as  

  Ψ Ψ( , ) ( ) ; ( , ) ( )( )/x t x e x t xn
iE t t

n
n= =− −φ φ0

0    

For these special solutions of the Schrödinger equation, all measurable properties are 

independent of time. For this reason they are called stationary states. For example the 

probability distribution 

   Ψ Ψ( , ) ( , ) ( )x t x t xn
2

0
2 2= = φ ,  

but also  

 A A A
t t
= ∀

0

,  

as is easily verified, by substituting the product form of the wave function. Also the 

probabilities to measure an eigenvalue ak  are independent of time, as seen below 

 
2

*
0

ˆ ( ) ( ) ( ) ( ) ( , ) ( )k k k k k kA x a x P t x x t dx P tϕ ϕ ϕ
∞

−∞
= → = Ψ =∫  

The common element in each of these proofs is that the time-dependent phase factor 

cancels because we have both Ψ( , )x t  and Ψ*( , )x t  in each expression, while the time-

dependent phase can be taken outside of the integration. Let me note that the stationary 
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solutions are determined by the initial condition. If you start off with a stationary state at 

t0 , the wave function is a stationary state for all time.  

 

 

The general solution of the time-dependent Schrödinger equation (TDSE) can be written 

as a time-dependent linear combination of stationary states. If we assume that the initial 

state is given by  
 Ψ( , ) ( ) ( ) ....x t c x c x0 1 1 2 2= + +φ φ   

  (it can always be written in this fashion as the eigenfunctions of H  form a complete set), 

then it is easily verified that  

 Ψ( , ) ( ) ( ) ...( )/ ( )/x t c e x c e xiE t t iE t t= + +− − − −
1 1 2 2

1 0 2 0φ φ  

satisfies the TDSE and the initial condition. For this general linear combination of 

eigenstates of H  (the general case) properties do depend on time. This is true for 

expectation values and probabilities, and is due to the fact that different 'components' in 

the wave function oscillate with different time factors. In calculating expectation values 

we get cross terms and the time-dependent phase factors do not cancel out. This situation 

is part of a homework problem, to help you digest the material.  

 

Independent of the initial wave function, energy is always conserved (as would be 

expected from classical physics), and also the probabilities to measure a particular energy 

Ek : 

 φ k k
iE t t

kx x t dx c e ck* ( )/( ) ( , )
−∞

∞ − −z = =Ψ
2 2 2

0  

This is true essentially because each component in the wave function that corresponds to 

an eigenstate oscillates with its own time constant. But the length of this component, 

which is the relevant quantity upon measurement of the energy is not affected. There are 

no cross terms in assigning the probabilities. 
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Further Remarks:   

 

- All depends on the initial wave function, which is arbitrary in principle. The most 

common way is to specify it by means of a measurement! 

- Stationary states: the inital state is defined to be an eigenfunction of H . In this case 

nothing moves except the phase of the wave function. In our current version of QM 

we would find infinite lifetimes of excited states!  (This is because the electro-

magnetic field is missing from our treatment and we have assumed a time-

independent H ). However, the fact that in stationary states there are no moving 

charges explains why electrons in stationary states do not fall back into the nuclei 

while emitting radiation. There is no oscillating charge in these states. Electrons are 

described by wave functions, not as classically moving particles. 

- In the most general case (if the initial state is not a stationary state) properties 

oscillate in time  (e.g. electron density) →  radiation!? Again there is a need to 

include e.m. field. In the real world, sytems do not satisfy our time-dependent 

Schrödinger equation indefinitely. The system interacts with the electromagnetic 

field, and in this way makes a transition to the ground state (eventually). This occurs 

even if no radiation field is present (spontaneous emission). These are the reasons that 

stationary states and in particular the ground state is so important.  

 

 

Discussion of postulates using density matrices and projectors. 

 

The formulation of quantum mechanics can be phrased a little more compactly and 

elegantly using density matrices and projectors. This avoids distinguishing between cases 

where eigenvalues are degenerate and also the overall phase of the wave function is 

irrelevant. Density matrices are used extensively in both statistical mechanics and in 

advanced treatments of spectroscopy. They generalize the wave function picture. We will 

not pursue this in great depth, but it is useful to be acquainted with it. 
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Degeneracies: 

 

Let us denote by a t i t t ni i, , , ,≡ = 1  a set of orthonormal eigenvectors of the operator A 

that correspond to the same ni -fold degenerate eigenvalue ai  that hence span the 

corresponding degenerate subspace. Then we can define the orthogonal projector on the 

eigenspace by ( ) , ,P a i t i ti
t

ni

=
=
∑

1

, with general matrix representation 

 P a p i t i t qpq i
t

ni

( ) , ,=
=
∑

1

. An orthogonal projector has the important properties 

,†P P P P= =2  (idempotency) as you can verify for yourself. The latter property is 

intuitively essential for a projector. If you project a vector on a subspace, the result lies in 

the subspace. If you then project again the same result is obtained. This is expressed by 

the idempotency condition 2ˆ ˆP P= . Moreover the only eigenvalues of ( )P ai  are 0 or 1. 

Any vector (completely) within the subspace corresponds to eigenvalue 1, while vectors 

orthogonal to the subspace have eigenvalue 0. ( )P ai  acts as the identity operator within 

the subspace. The operator ( )P ai  is independent of the precise definition of the 

eigenvectors i t, . Another orthonormal set of vectors i x,  that span the subspace would 

do just as well: ( ) , ,P a i x i xi
x

ni

=
=
∑

1

 would give the same matrix repesentation P apq i( ) 

(verify). Finally ( ) ( ) ,P a P a a ai j i j= ≠0 , because the eigenvectors corresponding to 

different eigenvalues are orthogonal. We can hence write ˆ ˆ ˆ( ) ( ) ( )i j i ijP a P a P a δ= . 

 

The operator A can be represented as ( )A a P ai
i

i= ∑ , from which follows immediately  

2 2

,

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

i i j j i j i j i i
i j i j i

i i
i

A a P a a P a a a P a P a a P a

f A f a P a

= = =

=

∑ ∑ ∑ ∑

∑
 

 

The probability to measure an eigenvalue ai  in a state Ψ  is given by  
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Ψ Ψ Ψ Ψi t i t P a
t

n

i

i

, , ( )
=
∑ =

1

. Moreover the (unnormalized) state after the 

measurement is given by ( ) , ,P a i t i ti
t

ni

Ψ Ψ=
=
∑

1

. In short projectors are a convenient 

way to deal with degenerate states. Only the subspaces are relevant and this is precisely 

the focus of the projectors. Compared to the formalism discussed before, where all 

eigenstates were non-degenerate, we now have to include a sum over the set of 

degenerate eigenstates. Since degenerate eigenstates are not unique, it is more convenient 

(and insightful) to work with the projectors instead. 

 

We can go one step further and associate a projector with the state Ψ  itself. This is 

called the density operator and is denoted D = Ψ Ψ . In this case the density operator 

corresponds to a pure state and is a projector. This operator has one eigenvalue 1, with 

corresponding eigenstate Ψ , while a state that is orthogonal to Ψ  will be an 

eigenstate of D̂  with eigenvalue 0. Moreover  

Tr D p p p p
p p

( ) = = = =∑ ∑Ψ Ψ Ψ Ψ Ψ Ψ 1 

The density D  completely characterizes the system and is independent of the overall 

phase of Ψ . You may have noticed before, that this overall phase does never play a role 

in the theory. It is only when different components in the wave function get different 

phases, that phase is important, as it truly changes the direction of the vector in Hilbert 

space. The probability to measure ai  on a system described by D  is given by  

p a Tr P a D p i t i t p

p p i t i t i t i t

i i
p t

n

p t

n

t

n

i

i i

( ) ( ( ) ) , ,

, , , ,

= = =

= =

∑ ∑

∑ ∑ ∑

=

= =

1

1 1

Ψ Ψ

Ψ Ψ Ψ Ψ
 

which agrees with the postulates. The system after measurement of eigenvalue ai  

(without normalization) would be given by  

 ( ) ( ) , , , ,
,

P a DP a i t i t i s i si i
t s

= ∑ Ψ Ψ  

The density as given above is normalized to  
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Tr P a DP a Tr P a P a D Tr P a D p ai i i i i i( ( ) ( )) ( ( ) ( ) ) ( ( ) ) ( )= = = , where we use that the 

trace is invariant under cyclic permutations of operators, and the property of 

idempotency. 

The complete ensemble after the measurement of A (at time ta ) can be represented as 

( ) ( ) ( )D t P a DP aa i
i

i= ∑  with normalization p ai
i

( ) =∑ 1. This density is not idempotent 

in general and is not a projector. It would not correspond to a pure state but to a mixture 

( ) ( )D t p aa i
i

i i= ∑ Ψ Ψ . This will be the general situation after a measurement, if the 

system is not separated into individual sub ensembles. In this sense the density 

formulation goes beyond the conventional quantum mechanical formulation. In actual 

experiments, and in statistical mechanics we are almost always dealing with statistical 

mixtures. The key idea is that every subensemble, describe by one component of the 

density matrix can be treated as an individual quantum systems, and the resulting 

probabilities can be averaged in the classical sense. So the sum over the subsystems has 

the same role as in classical statistics, while within a sub-branch iΨ  the laws of 

quantum mechanics would be fully applicable. The density formulation unifies these two 

descriptions, but we will not pursue this further at this point. 

For completeness he time dependence of the density operator (in general, pure 

state or mixture) is given by − ∂
∂

=i D
t

D H, . This is discussed on pages 295-307 of 

Cohen-Tannoudji  

 

Let us finally consider two Hermitian operators A and B  having the respective 

eigenspace projectors ( )P ai  and ( )P bj . If A and B  commute they have a complete set of 

common eigenvectors. It can be shown that in this case the projectors on the respective 

eigenspaces commute ( ), ( ) ,P a P b i ji j = ∀0 . The proof runs as follows. Let 

 ( ); ( )A a P a B b P bi
i

i j
j

j= =∑ ∑  

and 
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 , ( ), ( )
,

A B a b P a P bi j i j
i j

= =∑ 0 

Each individual term in the sum should equal zero as the operator parts are independent 

(projectors on different subspaces). Therefore either ai = 0, bj = 0 or the individual 

projectors commute. The special cases require some extra work. Since all projectors not 

corresponding to zero eigenvalues necessarily commute, we know that  

 ( ), ( ( )), ( ), ( )P a B P a B P a b P bi
a

j j
ji≠

∑ ∑
L
NM

O
QP
= = − = = − =

L
NM

O
QP
=

0
0 00 1 0 0 0 

Hence the "null-projector" for A commutes with all non-null-projectors for B  and 

therefore also with ( ( )) ( )1 0
0

− = =
≠
∑P b P bj j
bj

, which completes the proof. This result is 

completely equivalent to the statement that A and B  have a complete set of common 

eigenfunctions. The projectors ( ) ( )P a P bi j  would project on the subspace spanned by 

those eigenvectors a b ti j, ,  that all have the same eigenvalues ai  and bj .  

 

Tale on measuring non-commuting variables. 

 

The most famous example of two non-commuting observables are position and 

momentum. The properties of these operators are a little complicated because their 

spectra are continous. It is easier to consider the case of measuring angular momentum or 

even better the spin of an S=1/2 system. The three cartesian components of S  do not 

commute and we have the commutation relations ,S S i Sx y z= . However we can very 

well measure any of these individual quantities and we can also perform a sequence of 

measurements and analyse the results. In the absence of magnetic interactions in the 

hamiltonian the resulting state vectors after the measurement are independent of time, 

which is another simplification. In fact to discuss the results of quantum mechanics let us 

not use any mathematics at all. Let us analyse the real content first and then venture into 

mathematical formulations. 
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As our ensemble we take a class of schoolkids. Each of these kids has a lunchpacket that 

consists of three items. They all have a turkey or roast beef sandwich (t  or r ), a coke or a 

sprite to drink (c  or s ) and an apple or an orange (a  or o ) for desert. Our measurement 

consists of asking a kid what is in the lunch bag, and getting statistics on the ensemble 

(the class). However, we can ask only one question at a time. For example: "everybody 

with a turkey sandwich stand to the right". But not: "All that have an orange and a coke 

please stand on the left". That is asking two questions at once, and in the anology with the 

spin system reflects the impossibility to simultaneously measure non-commuting 

observables. In fact any 'measurement' we do should obey the laws of quantum 

mechanics. Our goal is to characterize the distribution of lunch bags (e.g how many 

tca rca tsa rco, , , ,...) etc, are there. Can we do this? If things behaved classically, easily. 

But not in the quantum world. Let us try. We would first ask all kids who has turkey and 

who has roast beef, and partition them into two groups. Then we would ask the turkey 

group who has a coke and set them apart. Fine. we already have an ensemble that has 

both a turkey and a coke, right? Let us check, and ask again. Who has a coke? Everybody 

has a coke. Now, who has a turkey sandwich? Oops. This doesn't work. Only about half 

of them has turkey. Asking the coke question destroyed the information we had on the 

turkey. In the quantum world it is impossible to isolate a group where everybody has both 

a coke and turkey. Asking the question changes the ensemble. This is fairly easy to 

understand mathematically, describing an ensemble as a vector in Hilbert space, that 

rotates under measurement, but it certainly does not make much sense when asking about 

lunch bags.  

 

The above is a representation in as simple a language as possible of some puzzling 

properties of quantum mechanics. The essence is that according to quantum mechanics  

(sometimes) we cannot create an ensemble that for sure will yield definite values for two 

non-commuting observables. This is the content of the Heisenberg uncertainty principle. 

The precise formulation would be  

∆ ∆A B A B≥
1
2

, .  

For a proof and discussion see Cohen-Tannoudhji pages 286-289. 
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It is often stated as "one cannot measure the precise value of A and B  simultaneously". 

This is a very incomplete statement of the principle and it has led to all kinds of 

ingenious constructions to violate the principle. It is much easier and complete to 

interpret the principle in a different way. There is no problem to measure A or B , and for 

each measurement (either A or B , but not both) on an individual system you get definite 

results. However, for certain pairs of eigenvalues of A and B , (a bi j, ) say, it is in 

principle impossible (according to QM) to prepare an ensemble such that all of the 

measurements on this ensemble yield precisely the result ai  if you measure A and bj  if 

you would measure B . In contrast there is no problem in preparing an ensemble such that 

every member would yield ai  if you measure A. You might put in some effort to 

appreciate the precise translation of the mathematical formulation of the uncertainty 

principle into words. It is a little easier if the commutator ,A B  is a constant, since then 

no ensemble will yield the same value for A and B  for all elements in the ensemble. So 

necessarily there is a spread, and the minimum spread depends on the commutator. In the 

general formulation the mimimum spread depends on an expectation value and hence on 

the state under consideration. Note that quantum mechanics actually does not preclude 

that individual systems have definite values for all observables. It does say that within the 

realm of quantum mechanics you cannot create an ensemble to prove it. Also note that it 

is impossible to discuss the uncertainty principle using a single system. It is perfectly 

possible to have an experiment where you measure A then B  then A then B  and find 

nothing weird: measurement of A yields ai  twice, while the measurement of B  yields bj  

in both cases. This is quite a possible outcome of this experiment. But beforehand you 

cannot be certain that it will happen that way. It is impossible to create an ensemble 

where all elements necessarily behave in this fashion. Of course you might be lucky and 

by chance, using small enough ensembles one can easily violate the Heisenberg 

uncertainty principle. That is all part of statistics. 

 

Let us discuss another hair raising situation. A long standing controversy is the so-called 

Einstein-Podolski-Rosen Paradox (EPR). EPR sought for the properties of individual 
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systems obeying the laws of quantum mechanics. In essence all parties can agree on the 

fact that a measurement can change the system. So in the example above if I ask Mary if 

she has a coke, afterwards she might no longer have the roast beef sandwich that she 

started out with. However, the issue at hand is different. EPR thought it would be 

possible that each lunch bag has a definite content before measurement, and we are 

simply looking what is in it. By looking at one piece of information we might, in the 

convoluted act of measurement, change another piece of information in ways that are 

hard to predict. This would then be the reason that one cannot prepare well specified 

ensembles, which are themselves prepared by measurements. It might be that we simply 

have too little control over the act of measurement (at present ?). Quantum aficionados 

tend to think differently about what happens during a measurement on an individual 

system. Their idea is that by measuring you force the microsystem to take a position. It is 

like flipping a coin at the moment of measurement. "Choose my dear electron! Up or 

Down?" By the act of measurement you force the system into an eigenstate of the 

corresponding observable, and it does so with probabilities predicted by quantum 

mechanics. The precise outcome of an individual experiment is unpredictable in 

principle. If one reads initial accounts of the Heisenberg uncertainty principle however, 

they very much reflect the viewpoint of EPR. Heisenberg himself for example discusses 

how measuring position necessarily changes the momentum of an electron. The later 

accepted viewpoint according to the so-called Kopenhagen interpretation is rather 

convoluted in that they use classical mechanics to describe the measuring apparatus and 

so there is a mysterious connection between the quantum and classical system. However, 

I think that the above stated position of the quantum aficionado reflects the attitude of 

many scientists in the field. It was my position until I wrote these notes.  

 

Let us adjust our lunch bag parabel a little so that we can describe the EPR line of 

thought in trivial terms. What if we could gain information about what is in a lunch bag 

without asking a question? Let us set up the experiment in a tricky way. Say we know 

that the lunch bags are handed out in complementary pairs. Each pair contains both 

turkey and roast beef, an apple and an orange, a coke and a sprite. So a pair of lunch bags 

might consist of tca rso&  or rso tca&  and so forth. We look when the lunch bags are 
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handed out and keep track of the corresponding pairing of the kids. The actual quantum 

experiment consists for example of two spin 1/2 atoms in an overall S=0 state.  Back to 

the kids. Let's say, Lois and Clark form a pair. Now we take Clark out on the playground 

and ask him about his sandwich. "Turkey he says. I would like salami!" Lois doesn't even 

know we asked, but we now know that she has roast beef without asking her (or 

perturbing her lunch bag). If we would ask her she would say roast beef 100% of the 

time. However, we don't need to ask her about her sandwich as we know already. Instead 

we ask Lois about her drink. "I have a coke she says". After we ask the coke question she 

might no longer have roast beef, but if we assume she has something definite in her lunch 

bag, before the coke question it was most definitely roast beef and a coke. So this is a 

smart measurement that shows it makes perfect sense that every lunch bag has something 

definite in it and by measuring we simply find out what it is. Only, by asking one specific 

question we might change the content of the lunch bag in other respects, and in 

unpredictable ways. At the time EPR wrote their paper this interpretation was in no 

conflict with any piece of data whatsoever. It was just an interpretation that should have 

appealed as something far more rational than flipping a coin at the time of measurement. 

If we take the alternative quantum interpretation about what actually happens, the EPR 

experiment is seen to take on all of its weirdness. Asking Clark what is in his lunch 

packet forces him to take a position. Clark flips a coin to make a decision. "Turkey". If 

we now would ask Lois about her sandwich she will say roast beef for sure. So she flips 

her coin too, but it always yields the same result. If we wouldn't have asked Clark it 

would give a fifty-fifty result, but now it yields a 100%. Now Lois nor her coin knows 

anything about our asking Clark. To put it in the extreme: flipping a coin in Tokyo 

determines the outcome of the flipping of the coin in New York. That doesn't make sense. 

The EPR interpretation is far more reasonable: if we assume there is something definite 

in the lunch bag, there is nothing strange about us knowing what is in Lois's lunch bag if 

we know what Clark has, given they form a perfect pair. 

 

However, EPR did something more. They claimed that physical theories should describe 

'reality', which means that quantum mechanics should allow for ensembles of completely 

specified lunch bags. This it did not, and therefore the theory was not quite up to par. 
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Quantum theory was incomplete. In order to describe ensembles of well specified 

, ,S S Sx y z  the structure of the theory needs to be changed completely. If we use the 

concept of Hilbert space, operators and eigenvalues it can not accommodate EPR's 

reality. Quantum theory was too successful to discard it, just because of a difference in 

interpretation that had apparently no measurable consequences: Is there something 

definite in the lunch bag before you look at it? 

 

This was the situation until John Bell came around. He showed that the EPR 

interpretation might lead to different results from the usual quantum theory for some 

experiments. And he used the EPR experiment to show it. This is how it works in terms 

of lunch bags. If EPR's postion is right then in fact I can construct what was in Lois's 

lunchpacket from the pairing experiment. From Clark's answer I know she had roast beef, 

and by our question we also know she has a coke. We are simply assuming that the 

question to Clark could not possibly have affected Lois's lunch box. There is no 

unpredictable act of measurement that has a range from New York to Tokyo. Let us 

assume therefore for the sake of argument that EPR are right. Every lunchbox has a 

definite content and by doing the pairing experiment I can determine two items in a 

luchbox. Now we take our whole class and do three types of experiment starting from 

identical ensembles in each experiment. In the first experiment we use the pairing 

experiment to determine if somebody has a turkey sandwich and a coke. By assumption 

she would then have either an orange or an apple as the third item. If we do this for the 

whole first ensemble we can write  
 n t c n t c o n t c a[ , ] [ , , ] [ , , ]= +  

where n t c[ , ] denotes the number of kids in the enesemble that have both a turkey and a 

coke, and so forth. In the next group we determine the number that has a sprite and an 

orange, in the third group turkey and orange. In total we would then have the following 

relations, assuming the minimal EPR conditions  

 
n t c n t c o n t c a
n s o n t s o n r s o
n t o n t c o n t s o

[ , ] [ , , ] [ , , ]
[ , ] [ , , ] [ , , ]
[ , ] [ , , ] [ , , ]

= +
= +
= +

 

From this we can derive the so-called Bell inequality:  
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 n t c n s o n t c o n t s o n t o[ , ] [ , ] [ , , ] [ , , ] [ , ]+ ≥ + =  

This is an inequality that one can test in an actual experiment, as one can make a spin 

zero pair, let it fly apart and measure the spin in different directions for the particle in 

Tokyo and the particle in New York. We will discuss the full details of the precise 

quantum treatment later on. But the outcome is that the usual treatment of quantum 

mechanics is in conflict with the above analysis based on the assumptions of EPR. 

Quantum mechanics violates Bell's inequalities. At the time of the EPR paper (1935) 

people couln't really say if EPR was right or the standard Kopenhagen interpretation was 

right. Neither did contradict any experiment. It appeared simply a matter of 

interpretation. With Bell however, there was a testable hypothesis. Experiments were 

done in the seventies, and the experiments by Alain Aspect are perhaps best known 

(though not the first). The technical details and fine print are rather involved, but the 

conclusion was that the traditional laws of quantum mechanics are correct. So one cannot 

assume that individual particles actually have definite values for , ,S S Sx y z  and we are 

simply determining what they are, although perturbing these values in the process.  

 

Does this mean that we have to accept the alternative interpretation? Flipping a coin in 

Tokyo determines the outcome of the flipping of a coin in New York? Not in my opinion. 

This 'making a choice during the measurement' aspect appears to be an act of human 

imagination. Us trying to understand what we cannot grasp. I think it is better to take a 

very mundane position. Quantum mechanics describes the statistical outcomes of 

complete experiments. In doing the measurement in Tokyo I am preparing a specific 

ensemble. The subsequent measurement in New York is described using this new 

ensemble. From the perspective of quantum mechanics the pairing experiment is no 

different from first asking Lois if she has roast beef and then asking if she has a coke. A 

measurement is a measurement, and if a measurement in Tokyo tells you something 

about the situation in New York, you have to adjust the ensemble accordingly. Of course 

this is nothing more than using the laws of quantum mechanics which are very definite 

for this type of experiment. What is hard to understand is how there can be such a strong 

correlation between two distant particles, which cannot be assumed to individually have 

definite properties, while as a pair they do. Quantum mechanics gives us the 
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mathematical prescription but it does go against common sense, and this is illustrated 

very vividly by the flipping the coin at the time of measurement picture. This 

phenomenon is called entanglement in the literature. I have a set of excersises that has 

you work out the quantum mechanics of Bell's experiment, if you are interested. It is a 

fair amount of work, but you have all of the back ground to do this. 
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Further reading and references: 

 

 

MS:   McQuarry and Simon: Physical Chemistry, a molecular approach, University 

Science books, ISBN 0935702-99-7. This contains an introduction to quantum 

mechanics, and it has a number of math chapters that give a quick overview of some 

needed material. 

 

Levine:   Ira N. Levine, Quantum Chemistry, fifth edition, Prentice Hall, ISBN0-13-

685512-1, Chapters 3 and 7. 

 

C-T: Claude Cohen-Tannoudji, Bernard Liu and Franck Laloë, Quantum Mechanics, 

volumes I and II. Wiley, This is a bible of quantum mechanics. It contains a wealth of 

material. It is an advanced textbook. ISBN 0-471-16433-X 

 


